Lower bounds on the performance of polynomial-time algorithms for sparse linear regression
暂无分享,去创建一个
[1] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[2] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[3] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[4] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[5] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[6] M. Wainwright,et al. High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.
[7] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[8] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[9] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[10] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[11] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[12] M. Rudelson,et al. Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.
[13] Martin J. Wainwright,et al. Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..
[14] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[15] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[16] P. Rigollet,et al. Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.
[17] Philippe Rigollet,et al. Computational Lower Bounds for Sparse PCA , 2013, ArXiv.
[18] B. Nadler,et al. Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .
[19] Yihong Wu,et al. Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.
[20] Yonina C. Eldar,et al. Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.
[21] B. Nadler,et al. DO SEMIDEFINITE RELAXATIONS SOLVE SPARSE PCA UP TO THE INFORMATION LIMIT , 2013, 1306.3690.