Lower bounds on the performance of polynomial-time algorithms for sparse linear regression

Under a standard assumption in complexity theory (NP 6⊂P/poly), we demonstrate a gap between the minimax prediction risk for sparse linear regression that can be achieved by polynomial-time algorithms, and that achieved by optimal algorithms. In particular, when the design matrix is ill-conditioned, the minimax prediction loss achievable by polynomial-time algorithms can be substantially greater than that of an optimal algorithm. This result is the first known gap between polynomial and optimal algorithms for sparse linear regression, and does not depend on conjectures in average-case complexity.

[1]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[2]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[3]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[4]  A. Tsybakov,et al.  Aggregation for Gaussian regression , 2007, 0710.3654.

[5]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[6]  M. Wainwright,et al.  High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.

[7]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[8]  S. Geer,et al.  On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.

[9]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[10]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[11]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[12]  M. Rudelson,et al.  Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.

[13]  Martin J. Wainwright,et al.  Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..

[14]  Martin J. Wainwright,et al.  Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.

[15]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[16]  P. Rigollet,et al.  Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.

[17]  Philippe Rigollet,et al.  Computational Lower Bounds for Sparse PCA , 2013, ArXiv.

[18]  B. Nadler,et al.  Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .

[19]  Yihong Wu,et al.  Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.

[20]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[21]  B. Nadler,et al.  DO SEMIDEFINITE RELAXATIONS SOLVE SPARSE PCA UP TO THE INFORMATION LIMIT , 2013, 1306.3690.