Inferring Graphs from Cascades: A Sparse Recovery Framework

In the Graph Inference problem, one seeks to recover the edges of an unknown graph from the observations of cascades propagating over this graph. We approach this problem from the sparse recovery perspective. We introduce a general model of cascades, including the voter model and the independent cascade model, for which we provide the first algorithm which recovers the graph's edges with high probability and O(s log m) measurements where s is the maximum degree of the graph and $m$ is the number of nodes. Furthermore, we show that our algorithm also recovers the edge weights (the parameters of the diffusion process) and is robust in the context of approximate sparsity. Finally we validate our approach empirically on synthetic graphs.

[1]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[2]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[3]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[4]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[5]  Martin J. Wainwright,et al.  Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..

[6]  S. Geer,et al.  The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso) , 2011 .

[7]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[8]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[9]  Adel Javanmard,et al.  Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..

[10]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[11]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[12]  Le Song,et al.  Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm , 2014, ICML.

[13]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[14]  Shuheng Zhou,et al.  25th Annual Conference on Learning Theory Reconstruction from Anisotropic Random Measurements , 2022 .

[15]  Robert D. Nowak,et al.  Sample complexity for 1-bit compressed sensing and sparse classification , 2010, 2010 IEEE International Symposium on Information Theory.

[16]  David P. Woodruff,et al.  (1 + eps)-Approximate Sparse Recovery , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[17]  Yaniv Plan,et al.  Dimension Reduction by Random Hyperplane Tessellations , 2014, Discret. Comput. Geom..

[18]  Andrea Montanari,et al.  The Noise-Sensitivity Phase Transition in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[19]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[20]  S. Geer,et al.  On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.

[21]  David P. Woodruff,et al.  Applications of the Shannon-Hartley theorem to data streams and sparse recovery , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[22]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[23]  Jon M. Kleinberg,et al.  Tracing information flow on a global scale using Internet chain-letter data , 2008, Proceedings of the National Academy of Sciences.

[24]  Beom Jun Kim,et al.  Growing scale-free networks with tunable clustering. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Le Song,et al.  Influence Function Learning in Information Diffusion Networks , 2014, ICML.

[26]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[27]  Le Song,et al.  Uncover Topic-Sensitive Information Diffusion Networks , 2013, AISTATS.

[28]  Alessandro Panconesi,et al.  Trace complexity of network inference , 2013, KDD.

[29]  Bernhard Schölkopf,et al.  Uncovering the Temporal Dynamics of Diffusion Networks , 2011, ICML.

[30]  David P. Woodruff,et al.  Lower bounds for sparse recovery , 2010, SODA '10.

[31]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[32]  Sujay Sanghavi,et al.  Learning the graph of epidemic cascades , 2012, SIGMETRICS '12.

[33]  Lada A. Adamic,et al.  Tracking information epidemics in blogspace , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[34]  Christos Faloutsos,et al.  Patterns of Cascading Behavior in Large Blog Graphs , 2007, SDM.

[35]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .