Distributed Control for 3D Metamorphosis

In this paper, we define Proteo as a class of three-dimensional (3D) metamorphic robotic system capable of approximating arbitrary 3D shapes by utilizing repeated modules. Each Proteo module contains embedded sensors, actuators and a controller, and each resides in a 3D grid space. A module can move itself to one of its open neighbor sites under certain motion constraints. Distributed control for the self-reconfiguration of such robots is an interesting and challenging problem. We present a class of distributed control algorithms for the reconfiguration of Proteo robots based on the “goal-ordering” mechanism. Performance results are shown for experiments of these algorithms in a simulation environment, and the properties of these algorithms are analyzed.

[1]  Joseph R. Cavallaro,et al.  Keeping the analog genie in the bottle: a case for digital robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  Christiaan J. J. Paredis,et al.  Kinematic Design of Serial Link Manipulators From Task Specifications , 1993, Int. J. Robotics Res..

[3]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Marsette Vona,et al.  A physical implementation of the self-reconfiguring crystalline robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[6]  Tad Hogg,et al.  Emergent structures in modular self-reconfigurable robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[8]  Pradeep K. Khosla,et al.  Mechatronic design of a modular self-reconfiguring robotic system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Arthur C. Sanderson,et al.  TETROBOT modular robotics: prototype and experiments , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[10]  Wei-Min Shen,et al.  Robot modularity for self-reconfiguration , 1999, Optics East.

[11]  Marsette Vona,et al.  Self-reconfiguration planning with compressible unit modules , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[12]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[13]  Mark Yim,et al.  New locomotion gaits , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[14]  Hajime Asama,et al.  Self-organizing collective robots with morphogenesis in a vertical plane , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[15]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[16]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[17]  Gregory S. Chirikjian,et al.  Design And Implementation Of Metamorphic Robots , 1996 .

[18]  Gregory S. Chirikjian,et al.  Evaluating efficiency of self-reconfiguration in a class of modular robots , 1996, J. Field Robotics.

[19]  Leonidas J. Guibas Controlled Module Density Helps Reconfiguration Planning , 2000 .