Visualization of Heterogeneous Data

Both the resource description framework (RDF), used in the semantic web, and Maya Viz u-forms represent data as a graph of objects connected by labeled edges. Existing systems for flexible visualization of this kind of data require manual specification of the possible visualization roles for each data attribute. When the schema is large and unfamiliar, this requirement inhibits exploratory visualization by requiring a costly up-front data integration step. To eliminate this step, we propose an automatic technique for mapping data attributes to visualization attributes. We formulate this as a schema matching problem, finding appropriate paths in the data model for each required visualization attribute in a visualization template.

[1]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[2]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[3]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[4]  David R. Karger,et al.  Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.

[5]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[6]  Jade Goldstein-Stewart,et al.  Interactive graphic design using automatic presentation knowledge , 1994, CHI '94.

[7]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[8]  Steven F. Roth,et al.  Visage: a user interface environment for exploring information , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[9]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[10]  Tiziana Catarci,et al.  Visual Query Systems for Databases: A Survey , 1997, J. Vis. Lang. Comput..

[11]  J. Myllymaki,et al.  DEVise: integrated querying and visual exploration of large datasets , 1997, SIGMOD '97.

[12]  Jussi Myllymaki,et al.  DEVise: Integrated Querying and Visualization of Large Datasets , 1997, SIGMOD Conference.

[13]  J. Widom,et al.  Interactive Query and Search in Semistructured Databases , 1998, WebDB.

[14]  Michael Stonebraker,et al.  VIQING: visual interactive querying , 1998, Proceedings. 1998 IEEE Symposium on Visual Languages (Cat. No.98TB100254).

[15]  George W. Furnas,et al.  Considerations for information environments and the NaviQue workspace , 1998, DL '98.

[16]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[17]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[18]  Agathoniki Trigoni,et al.  Interactive Query Formulation in Semistructured Databases , 2002, FQAS.

[19]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[20]  Divesh Srivastava,et al.  A System for Keyword Proximity Search on XML Databases , 2003, VLDB.

[21]  Michael Stonebraker,et al.  Visionary: A Next Generation Visualization System for Databases , 2003, SIGMOD Conference.

[22]  Vagelis Hristidis,et al.  Keyword proximity search on XML graphs , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[23]  Kevin Li,et al.  Faceted metadata for image search and browsing , 2003, CHI '03.

[24]  Randy Goebel,et al.  Visualizing and discovering web navigational patterns , 2004, WebDB '04.

[25]  Cong Yu,et al.  Schema-Free XQuery , 2004, VLDB.

[26]  David Maier,et al.  From databases to dataspaces: a new abstraction for information management , 2005, SGMD.

[27]  David R. Karger,et al.  Magnet: supporting navigation in semistructured data environments , 2005, SIGMOD '05.

[28]  AnHai Doan,et al.  Corpus-based schema matching , 2005, 21st International Conference on Data Engineering (ICDE'05).

[29]  Paraskevas Evripidou,et al.  A relationally complete visual query language for heterogeneous data sources and pervasive querying , 2005, 21st International Conference on Data Engineering (ICDE'05).

[30]  Jeffrey Heer,et al.  prefuse: a toolkit for interactive information visualization , 2005, CHI.

[31]  Leland Wilkinson,et al.  The Grammar of Graphics (Statistics and Computing) , 2005 .

[32]  David R. Karger,et al.  Haystack: A General-Purpose Information Management Tool for End Users Based on Semistructured Data , 2005, CIDR.

[33]  Alin Deutsch,et al.  Interactive query formulation over web service-accessed sources , 2006, SIGMOD Conference.

[34]  Cláudio T. Silva,et al.  VisTrails: visualization meets data management , 2006, SIGMOD Conference.

[35]  Ravi Kumar,et al.  Visualizing tags over time , 2006, WWW '06.

[36]  Pat Hanrahan,et al.  VizQL: a language for query, analysis and visualization , 2006, SIGMOD Conference.

[37]  Jun Zhang,et al.  NUITS: a novel user interface for efficient keyword search over databases , 2006, VLDB.

[38]  Mark Bailey,et al.  The Grammar of Graphics , 2007, Technometrics.

[39]  Jason I. Hong,et al.  Marmite: Towards End-User Programming for the Web , 2007, IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007).

[40]  Nancy Kranich,et al.  Information commons , 2008, Annu. Rev. Inf. Sci. Technol..

[41]  Nigel Shadbolt,et al.  Resource Description Framework (RDF) , 2009 .