Caterpillar Duality for Constraint Satisfaction Problems

The study of constraint satisfaction problems definable in various fragments of Datalog has recently gained considerable importance. We consider constraint satisfaction problems that are definable in the smallest natural recursive fragment of Datalog - monadic linear Datalog with at most one EDB per rule. We give combinatorial and algebraic characterisations of such problems, in terms of caterpillar dualities and lattice operations, respectively. We then apply our results to study graph H-colouring problems.

[1]  G. Grätzer General Lattice Theory , 1978 .

[2]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[3]  Claude Tardif,et al.  A Characterisation of First-Order Constraint Satisfaction Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[4]  Peter Jeavons,et al.  The Complexity of Constraint Languages , 2006, Handbook of Constraint Programming.

[5]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[6]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[7]  Pascal Tesson,et al.  Symmetric Datalog and Constraint Satisfaction Problems in Logspace , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[8]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[9]  Martin Grohe,et al.  The Structure of Tractable Constraint Satisfaction Problems , 2006, MFCS.

[10]  Xuding Zhu,et al.  Homomorphisms to oriented paths , 1994, Discret. Math..

[11]  Pavol Hell,et al.  Minimum Cost Homomorphisms to Reflexive Digraphs , 2007, LATIN.

[12]  Libor Barto,et al.  Graphs, polymorphisms and the complexity of homomorphism problems , 2008, STOC '08.

[13]  Albert Atserias,et al.  On digraph coloring problems and treewidth duality , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[14]  László Zádori Relational Sets and Categorical Equivalence of Algebras , 1997, Int. J. Algebra Comput..

[15]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..

[16]  Y. Gurevich On Finite Model Theory , 1990 .

[17]  Pawel M. Idziak,et al.  Tractability and learnability arising from algebras with few subpowers , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[18]  Andrei A. Bulatov,et al.  Dualities for Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[19]  Andrei A. Bulatov H-Coloring dichotomy revisited , 2005, Theor. Comput. Sci..

[20]  Jaroslav Nesetril,et al.  Duality Theorems for Finite Structures (Characterising Gaps and Good Characterisations) , 2000, J. Comb. Theory, Ser. B.

[21]  P. Jeavons,et al.  The complexity of constraint satisfaction : an algebraic approach. , 2005 .

[22]  Phokion G. Kolaitis On the Expressive Power of Logics on Finite Models , 2007 .

[23]  Phokion G. Kolaitis,et al.  A Logical Approach to Constraint Satisfaction , 2008, Complexity of Constraints.

[24]  Claude Tardif,et al.  Majority functions on structures with finite duality , 2008, Eur. J. Comb..

[25]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.