Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid

National Research Foundation (NRF), the Translational Engineering Skills Programme (TESP), Stellenbosch University, the South African National Energy Research Institute (SANERI)/South African National Energy Development Institute (SANEDI) at the University of Pretoria, the Council for Scientific and Industrial Research (CSIR), the Energy-efficiency and Demand-side Management (EEDSM) Hub and NAC.

[1]  Patricia E. Gharagozloo,et al.  A Benchmark Study on the Thermal Conductivity of Nanofluids , 2009 .

[2]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[3]  H. Herwig,et al.  Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions , 2004 .

[4]  K. Ravi Kumar,et al.  Numerical Investigation of Energy-Efficient Receiver for Solar Parabolic Trough Concentrator , 2008 .

[5]  Christoph Richter,et al.  Concentrating Solar Power - Solar Power on Demand , 2014 .

[6]  S. Kalogirou Solar Energy Engineering: Processes and Systems , 2009 .

[7]  A. Alemrajabi,et al.  Experimental investigation of stability and extinction coefficient of Al2O3–CuO binary nanoparticles dispersed in ethylene glycol–water mixture for low-temperature direct absorption solar collectors , 2016 .

[8]  J. Meyer,et al.  Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts , 2014 .

[9]  Alibakhsh Kasaeian,et al.  Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid , 2014 .

[10]  Josua P. Meyer,et al.  Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios , 2014 .

[11]  Feng Zhao,et al.  Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector , 2013 .

[12]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[13]  Josua P. Meyer,et al.  Multi-objective and thermodynamic optimisation of a parabolic trough receiver with perforated plate inserts , 2015 .

[14]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[15]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[16]  Wang Fuqiang,et al.  Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics , 2016 .

[17]  Robert A. Taylor,et al.  Applicability of nanofluids in high flux solar collectors , 2011 .

[18]  Arun Kumar Tiwari,et al.  Progress of nanofluid application in solar collectors: A review , 2015 .

[19]  O. Manca,et al.  Numerical study of a confined slot impinging jet with nanofluids , 2011, Nanoscale research letters.

[20]  J. Meyer,et al.  THERMAL AND THERMODYNAMIC ANALYSIS OF A PARABOLIC TROUGH RECEIVER AT DIFFERENT CONCENTRATION RATIOS AND RIM ANGLES , 2014 .

[21]  Zhongjie Huan,et al.  Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water-Al2O3 nanofluid , 2015 .

[22]  F. S. Javadi,et al.  Investigating performance improvement of solar collectors by using nanofluids , 2013 .

[23]  H. Herwig,et al.  Entropy production calculation for turbulent shear flows and their implementation in cfd codes , 2005 .

[24]  Josua P. Meyer,et al.  Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid , 2015 .

[25]  Farzad Veysi,et al.  Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector , 2016 .

[26]  Josua P. Meyer,et al.  Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios , 2013 .

[27]  G. M. Joselin Herbert,et al.  A review of solar parabolic trough collector , 2016 .

[28]  S. C. Mullick,et al.  An improved technique for computing the heat loss factor of a tubular absorber , 1989 .

[29]  R. Forristall,et al.  Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver , 2003 .

[30]  Hamid Reza Seyf,et al.  Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks , 2012 .

[31]  Ching-Jenq Ho,et al.  Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity , 2008 .

[32]  Saad Mekhilef,et al.  Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids , 2015 .

[33]  Yangyang He,et al.  Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers , 2012 .

[34]  Lin Lu,et al.  Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: Indoor experiment , 2011 .

[35]  D. Kearney,et al.  Test results: SEGS LS-2 solar collector , 1994 .

[36]  C. Kutscher,et al.  Heat-Loss Testing of Solel's UVAC3 Parabolic Trough Receiver , 2008 .

[37]  Saeed Zeinali Heris,et al.  Analysis of entropy generation between co-rotating cylinders using nanofluids , 2012 .

[38]  Xungang Diao,et al.  A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts , 2014 .

[39]  Eckhard Lüpfert,et al.  Heat Loss Measurements on Parabolic Trough Receivers , 2010 .

[40]  A. Bejan Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes , 1995 .

[41]  Amin Ebrahimi,et al.  Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using Nanofluids , 2016 .

[42]  O. Mahian,et al.  Performance analysis of a minichannel-based solar collector using different nanofluids , 2014 .

[43]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[44]  Di Zhang,et al.  Heat transfer and flow analysis of Al2O3–water nanofluids in microchannel with dimple and protrusion , 2014 .

[45]  Dnyaneshwar R. Waghole,et al.  Experimental Investigations on Heat Transfer and Friction Factor of Silver Nanofliud in Absorber/Receiver of Parabolic Trough Collector with Twisted Tape Inserts , 2014 .

[46]  N. Galanis,et al.  Heat transfer enhancement by using nanofluids in forced convection flows , 2005 .

[47]  J. Muñoz,et al.  Analysis of internal helically finned tubes for parabolic trough design by CFD tools , 2011 .

[48]  Nasrudin Abd Rahim,et al.  Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid , 2016 .

[49]  C. T. Nguyen,et al.  Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids , 2004 .

[50]  K. R. Kumar,et al.  Thermal analysis of solar parabolic trough with porous disc receiver , 2009 .

[51]  Aldo Steinfeld,et al.  Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators , 2014 .

[52]  Saad Mekhilef,et al.  Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector , 2013 .

[53]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[54]  Mustafa Turkyilmazoglu,et al.  Performance of direct absorption solar collector with nanofluid mixture , 2016 .

[55]  Wolfgang Schiel,et al.  ULTIMATE TROUGH® - Fabrication, Erection and Commissioning of the World's Largest Parabolic Trough Collector☆ , 2014 .

[56]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[57]  S. Iniyan,et al.  Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations , 2015 .

[58]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[59]  O. García-Valladares,et al.  Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers , 2009 .

[60]  T. Wendelin Parabolic Trough VSHOT Optical Characterization in 2005-2006 (Presentation) , 2006 .