Affine Weyl Groups as Infinite Permutations

We present a unified theory for permutation models of all the infinite families of finite and affine Weyl groups, including interpretations of the length function and the weak order. We also give new combinatorial proofs of Bott's formula (in the refined version of Macdonald) for the Poincare series of these affine Weyl groups.

[1]  Charles Ehresmann,et al.  Sur la topologie de certains espaces homogènes , 1934 .

[2]  Jian-yi Shi On Two Presentations of the Affine Weyl Groups of Classical Types , 1999 .

[3]  Kimmo Eriksson,et al.  Lecture Hall Partitions , 1997 .

[4]  Robert Bédard,et al.  Cells for two coxeter groups , 1986 .

[5]  Victor Reiner The distribution of descents and length in a Coxeter group , 1995, Electron. J. Comb..

[6]  Henrik Eriksson,et al.  Computational and Combinatorial Aspects of Coxeter Groups , 1994 .

[7]  Robert A. Proctor,et al.  Classical Bruhat orders and lexicographic shellability , 1982 .

[8]  George Lusztig,et al.  Some examples of square integrable representations of semisimple p-adic groups , 1983 .

[9]  Francesco Brenti,et al.  q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..

[10]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[11]  Vinay V. Deodhar Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .

[12]  Anders Björner,et al.  Affine permutations of type A , 1995, Electron. J. Comb..

[13]  Jian-yi Shi,et al.  Some Results Relating Two Presentations of Certain Affine Weyl Groups , 1994 .

[14]  Polygon Posets and the Weak Order of Coxeter Groups , 1995 .

[15]  Richard Ehrenborg,et al.  Juggling and applications to q-analogues , 1996, Discret. Math..

[16]  I. Macdonald The Poincaré series of a Coxeter group , 1972 .

[17]  R. Bott An application of the Morse theory to the topology of Lie-groups , 1956 .