A robust lane detection and tracking method based on computer vision

This paper presents a robust method designed to detect and track a road lane from images provided by an on-board monocular monochromatic camera. The proposed lane detection approach makes use of a deformable template model to the expected lane boundaries in the image, a maximum a posteriori formulation of the lane detection problem, and a Tabu search algorithm to maximize the posterior density. The model parameters completely determine the position of the host vehicle within the lane, its heading direction and the local structure of the lane ahead. Based on the lane detection result in the first frame of the image sequence, a particle filter, having multiple hypotheses capability and performing nonlinear filtering, is used to recursively estimate the lane shape and the vehicle position in the sequence of consecutive images. Experimental results reveal that the proposed lane detection and tracking method is robust against broken lane markings, curved lanes, shadows, strong distracting edges, and occlusions in the captured road images.

[1]  Matthew Turk,et al.  VITS-A Vision System for Autonomous Land Vehicle Navigation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Martial Hebert,et al.  Vision and navigation for the Carnegie-Mellon Navlab , 1988 .

[3]  Charles E. Thorpe,et al.  UNSCARF-a color vision system for the detection of unstructured roads , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[4]  Ernst D. Dickmanns,et al.  Recursive 3-D Road and Relative Ego-State Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[6]  Charles E. Thorpe,et al.  SCARF: a color vision system that tracks roads and intersections , 1993, IEEE Trans. Robotics Autom..

[7]  E.-G. Talbi,et al.  Hill-climbing, simulated annealing and genetic algorithms: a comparative study and application to the mapping problem , 1993, [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences.

[8]  H.-H. Nagel,et al.  Texture-based segmentation of road images , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[9]  Dean A. Pomerleau,et al.  RALPH: rapidly adapting lateral position handler , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[10]  Sridhar Lakshmanan,et al.  A deformable-template approach to lane detection , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[11]  P. Siarry,et al.  FITTING OF TABU SEARCH TO OPTIMIZE FUNCTIONS OF CONTINUOUS VARIABLES , 1997 .

[12]  Massimo Bertozzi,et al.  GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection , 1998, IEEE Trans. Image Process..

[13]  Antonio Guiducci,et al.  Parametric Model of the Perspective Projection of a Road with Applications to Lane Keeping and 3D Road Reconstruction , 1999, Comput. Vis. Image Underst..

[14]  Dinggang Shen,et al.  Lane detection using B-snake , 1999, Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No.PR00446).

[15]  Jitendra Malik,et al.  A Comparative Study of Vision-Based Lateral Control Strategies for Autonomous Highway Driving , 1999, Int. J. Robotics Res..

[16]  Christopher M. Kreucher,et al.  LANA: a lane extraction algorithm that uses frequency domain features , 1999, IEEE Trans. Robotics Autom..

[17]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[18]  Massimo Bertozzi,et al.  Vision-based intelligent vehicles: State of the art and perspectives , 2000, Robotics Auton. Syst..

[19]  Sridhar Lakshmanan,et al.  CLARK: a heterogeneous sensor fusion method for finding lanes and obstacles , 2000, Image Vis. Comput..

[20]  Bernd Hürtgen,et al.  Lane following combining vision and DGPS , 2000, Image Vis. Comput..

[21]  Sadiq M. Sait,et al.  Evolutionary algorithms, simulated annealing and tabu search: a comparative study , 2001 .

[22]  S. Ho,et al.  A common Tabu search algorithm for the global optimization of engineering problems , 2001 .

[23]  Camillo J. Taylor,et al.  Stochastic road shape estimation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Romuald Aufrère,et al.  Accurate road following and reconstruction by computer vision , 2002, IEEE Trans. Intell. Transp. Syst..

[25]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[26]  Joon Woong Lee,et al.  A Machine Vision System for Lane-Departure Detection , 2002, Comput. Vis. Image Underst..

[27]  Massimo Bertozzi,et al.  Artificial vision in road vehicles , 2002, Proc. IEEE.

[28]  Michalis E. Zervakis,et al.  A survey of video processing techniques for traffic applications , 2003, Image Vis. Comput..

[29]  Joon Woong Lee,et al.  A lane-curve detection based on an LCF , 2003, Pattern Recognit. Lett..

[30]  Dinggang Shen,et al.  Lane detection and tracking using B-Snake , 2004, Image Vis. Comput..

[31]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[32]  Nanning Zheng,et al.  Springrobot: a prototype autonomous vehicle and its algorithms for lane detection , 2004, IEEE Transactions on Intelligent Transportation Systems.

[33]  Luis Magdalena,et al.  VIRTUOUS: vision-based road transportation for unmanned operation on urban-like scenarios , 2004, IEEE Transactions on Intelligent Transportation Systems.