Noise-induced pattern formation in excitable media

In der vorliegenden Arbeit untersuchen wir spontane raum-zeitliche Strukturbildungsprozesse in erregbaren Systemen, die äußeren Fluktuationen mit endlicher Korrelationszeit und Korrelationslänge unterworfen sind. Zunächst beschränken wir uns auf einzelne, räumlich nicht untereinander gekoppelte erregbare Elemente. Wir untersuchen zwei verschiedene Modelle erregbaren Verhaltens: Das FitzHugh-Nagumo Modell der biologischen Erregungsleitung für das Aktionspotenzial in einem Neuron und das Oregonator Modell für die lichtempfindliche Belousov-Zhabotinsky Reaktion. In beiden Modellen werden die externen Fluktuationen über die Höhe der Anregungsschwelle an die nichtlineare Dynamik angekoppelt. Wir zeigen, dass neben der Intensität des Rauschens auch die Korrelationszeit die Kohärenz der Systemantwort beeinflussen kann und bestimmen die optimale Korrelationszeit, bei der die Fluktuationen maximal kohärentes Verhalten im System induzieren. Diese Kohärenzresonanz bezüglich der Korrelationszeit des Rauschens haben wir sowohl für den Ornstein-Uhlenbeck Prozess im FitzHugh-Nagumo Modell als auch für ein dichotomes Rauschen im Oregonator Modell nachgewiesen. Im letzteren Fall war die optimale Korrelationszeit in der Größenordnung der Anregungszeit. Zur experimentellen Überprüfung dieser Ergebnisse haben wir einen Messplatz zur photometrischen Verfolgung der Musterbildung in einem lichtempfindlichen Belousov-Zhabotinsky Medium unter den Bedingungen räumlich und zeitlich fluktuierender Lichtintensität entwickelt. Unsere experimentellen Ergebnisse stimmen gut mit den numerischen Simulationen des Oregonator-Modells überein. Danach betrachten wir ein erregbares Medium mit diffusiver Kopplung zwischen den einzelnen Elementen und untersuchen den Einfluss farbigen Rauschens auf die Ausbildung raum-zeitlicher Muster. Dabei werden sowohl zeitliche als auch räumliche Korrelationen berücksichtigt. Wir zeigen, dass eine optimale Einstellung der Korrelationslänge die Kohärenz der stochastisch induzierten Muster verbessert. Eine weitere Erhöhung der Kohärenz lässt sich durch rückkopplungsgestützte Kontrolle erreichen. Im Fall zeitverzögerter Rückkopplung können wir die räumliche und zeitliche Kohärenz sowie die charakteristischen räumlichen und zeitlichen Skalen der Muster über die Verzögerungszeit steuern. Zum Schluss richten wir unsere Aufmerksamkeit auf periodische Wellenzüge, die sich in erregbaren Medien mit fluktuierender Anregungsschwelle ausbreiten. Im Rahmen einer störungstheoretischen Betrachtung berechnen wir für den Fall kleiner Rauschintensität die Abhängigkeit der Ausbreitungsgeschwindigkeit von der Stärke, der Korrelationszeit und der Korrelationslänge der Fluktuationen. In diesem Zusammenhang diskutieren wir u.a. fluktuationsinduzierte Formen der anormalen Dispersion von Pulsfolgen, die bisher nur in deterministischen Systemen beobachtet wurden. .

[1]  L. Kuhnert,et al.  A new optical photochemical memory device in a light-sensitive chemical active medium , 1986, Nature.

[2]  Schimansky-Geier,et al.  Coherence and stochastic resonance in a two-state system , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  D. Clapham,et al.  Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. , 1991, Science.

[4]  P. Jung,et al.  Colored Noise in Dynamical Systems , 2007 .

[5]  Vladimir K. Vanag,et al.  Inwardly Rotating Spiral Waves in a Reaction-Diffusion System , 2001, Science.

[6]  W. CLEMENT LEY,et al.  Brain Dynamics , 1880, Nature.

[7]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[8]  J. M. Sancho,et al.  Excitability transitions and wave dynamics under spatiotemporal structured noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[10]  H. Engel,et al.  Oscillatory dispersion and coexisting stable pulse trains in an excitable medium. , 2003, Physical review letters.

[11]  Müller,et al.  Feedback-controlled dynamics of meandering spiral waves. , 1995, Physical review letters.

[12]  E Schöll,et al.  Control of unstable steady states by time-delayed feedback methods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Christian Hauptmann,et al.  Effective desynchronization by nonlinear delayed feedback. , 2005, Physical review letters.

[14]  Eckehard Schöll,et al.  Control of noise-induced oscillations by delayed feedback , 2004 .

[15]  Kenji Miyakawa,et al.  Experimental observation of coherence resonance in an excitable chemical reaction system. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Levine,et al.  Spiral competition in three-component excitable media. , 1996, Physical review letters.

[17]  Ying-Cheng Lai,et al.  Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  H Engel,et al.  Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. , 2004, Physical review letters.

[19]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[20]  G. Wessler,et al.  Repressing of Chemical Waves by Photochemical Inhibitor Releasing , 1986 .

[21]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[22]  Igor Goychuk,et al.  Channel noise and synchronization in excitable membranes , 2003 .

[23]  Alexander B. Neiman,et al.  COHERENCE RESONANCE AT NOISY PRECURSORS OF BIFURCATIONS IN NONLINEAR DYNAMICAL SYSTEMS , 1997 .

[24]  Carey,et al.  Resonant phase patterns in a reaction-diffusion system , 2000, Physical review letters.

[25]  L Schimansky-Geier,et al.  Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[27]  K. Showalter,et al.  Noise-supported travelling waves in sub-excitable media , 1998, Nature.

[28]  I. Sendiña-Nadal,et al.  Noise-induced wave nucleations in an excitable chemical reaction. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Kenneth Showalter,et al.  Spatiotemporal networks in addressable excitable media. , 2005, Physical review letters.

[30]  P. Mikhailov,et al.  Foundations of Synergetics II , 1996, Springer Series in Synergetics.

[31]  Peter Hänggi,et al.  Correlation functions and masterequations of generalized (non-Markovian) Langevin equations , 1978 .

[32]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[33]  Eckehard Schöll,et al.  Giant improvement of time-delayed feedback control by spatio-temporal filtering. , 2002, Physical review letters.

[34]  E Schöll,et al.  Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Q. Ouyang,et al.  Transition from spirals to defect turbulence driven by a convective instability , 1996, Nature.

[36]  Alexander B. Neiman,et al.  Coherence resonance in a Hodgkin-Huxley neuron , 1998 .

[37]  A. Neiman,et al.  Thermal activation by power-limited coloured noise , 2005 .

[38]  H. Haken,et al.  Stochastic resonance without external periodic force. , 1993, Physical review letters.

[39]  F Moss,et al.  Noise-induced spiral waves in astrocyte syncytia show evidence of self-organized criticality. , 1998, Journal of neurophysiology.

[40]  Giacomelli,et al.  Experimental evidence of coherence resonance in an optical system , 2000, Physical review letters.

[41]  Martin Fowler,et al.  Patterns , 2021, IEEE Software.

[42]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[43]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[44]  A. Sutera,et al.  The mechanism of stochastic resonance , 1981 .

[45]  E Schöll,et al.  Time-delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  A. Baldassarri,et al.  Influence of correlations on the velocity statistics of scalar granular gases , 2001, cond-mat/0111066.

[47]  J. Tyson,et al.  Target patterns in a realistic model of the Belousov–Zhabotinskii reaction , 1980 .

[48]  Francesca Colaiori,et al.  Signature of effective mass in crackling-noise asymmetry , 2005, cond-mat/0507607.

[49]  A. Mikhailov,et al.  Dynamic bistability of front propagation and stable localized domains in systems with first-order phase transition , 1990 .

[50]  M. Falcke Reading the patterns in living cells —the physics of ca2+ signaling , 2004 .

[51]  B. Hess,et al.  Two-dimensional spectrophotometry of spiral wave propagation in the belousov—Zhabotinskii reaction. II. Geometric and kinematic parameters , 1987 .

[52]  Lutz Schimansky-Geier,et al.  Noise-Sustained Pulsating Patterns and Global Oscillations in Subexcitable Media , 1999 .

[53]  H. Engel,et al.  Experimental study of the dynamics of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor , 2000 .

[54]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[55]  Eckehard Schöll,et al.  Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors , 2001 .

[56]  S. Coombes,et al.  Sparks and waves in a stochastic fire-diffuse-fire model of Ca2+ release. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  J. Bechhoefer Feedback for physicists: A tutorial essay on control , 2005 .

[58]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[59]  J. M. Sancho,et al.  Spatial coherence resonance near pattern-forming instabilities , 2004 .

[60]  H. Engel,et al.  From trigger to phase waves and back again , 2006 .

[61]  Kenneth Showalter,et al.  Noise Driven Avalanche Behavior in Subexcitable Media , 1999 .

[62]  Anna L. Lin,et al.  Resonant Pattern Formation in a Spatially Extended Chemical System , 1999 .

[63]  M. Rosenblum,et al.  Controlling oscillator coherence by delayed feedback. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Wolfram Just,et al.  MECHANISM OF TIME-DELAYED FEEDBACK CONTROL , 1996, chao-dyn/9611012.

[65]  R. Lefever,et al.  Noise in nonlinear dynamical systems: Noise-induced transitions , 1989 .

[66]  H. Engel,et al.  Autowave propagation in heterogeneous active media , 1991 .

[67]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[68]  A S Mikhailov,et al.  Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[70]  Eckehard Schöll,et al.  CONTROLLING STOCHASTIC OSCILLATIONS CLOSE TO A HOPF BIFURCATION BY TIME-DELAYED FEEDBACK , 2005 .

[71]  L Schimansky-Geier,et al.  Behavioral stochastic resonance: how a noisy army betrays its outpost. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  W L Ditto,et al.  Noninvasive control of stochastic resonance. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  M. Rosenblum,et al.  Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Vladimir Zykov,et al.  Dynamics of spiral waves under global feedback in excitable domains of different shapes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  James P. Keener,et al.  Mathematical physiology , 1998 .

[76]  J. M. Sancho,et al.  Coherence and anticoherence resonance tuned by noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  L. Kuhnert,et al.  Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinskii systems , 1990 .

[78]  E Schöll,et al.  Delayed feedback as a means of control of noise-induced motion. , 2003, Physical review letters.

[79]  L. Tsimring,et al.  Stochastic spreading of intracellular Ca(2+) release. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  Benjamin Lindner,et al.  Interspike interval statistics of neurons driven by colored noise. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  H. Eugene Stanley,et al.  Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen effect , 1998 .

[82]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[83]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[84]  Bulsara,et al.  Theory of controlling stochastic resonance , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[85]  Mathias Bode,et al.  Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation , 1998 .

[86]  A. T. Winfree,et al.  Alternative stable rotors in an excitable medium , 1991 .

[87]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[88]  Thomas T. Imhoff,et al.  Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. , 1996, Journal of neurophysiology.

[89]  Evgenii A. Novikov,et al.  Functionals and the random-force method in turbulence theory , 1965 .

[90]  M. Chacron,et al.  Firing statistics of a neuron model driven by long-range correlated noise. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  L. Schimansky-Geier,et al.  COLLECTIVE DYNAMICS IN AN ENSEMBLE OF GLOBALLY COUPLED FHN SYSTEMS , 2005 .

[92]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[93]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[94]  Hideo Hasegawa,et al.  Dynamical mean-field approximation to small-world networks of spiking neurons: from local to global and/or from regular to random couplings. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Vladimir Zykov,et al.  Control of spiral-wave dynamics in active media by periodic modulation of excitability , 1993, Nature.

[96]  Yutaka Sakai,et al.  Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons , 1999, Neural Networks.

[97]  Riccardo Mannella,et al.  A Gentle Introduction to the Integration of Stochastic Differential Equations , 2000 .

[98]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[99]  E Schöll,et al.  Delayed feedback control of stochastic spatiotemporal dynamics in a resonant tunneling diode. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  S. Solla,et al.  Self-sustained activity in a small-world network of excitable neurons. , 2003, Physical review letters.

[101]  J. M. Sancho,et al.  Noise in spatially extended systems , 1999 .

[102]  C. Mirasso,et al.  System size coherence resonance in coupled FitzHugh-Nagumo models , 2003 .

[103]  Alexander B. Neiman,et al.  Noise-Enhanced Phase Synchronization in Excitable Media , 1999 .

[104]  I. Goychuk,et al.  Stochastic resonance as a collective property of ion channel assemblies , 2001, physics/0106036.

[105]  J M Sancho,et al.  Front dynamics in the presence of spatiotemporal structured noises. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  Heinz G. Schuster,et al.  Handbook of Chaos Control: Foundations and Applications , 1999 .

[107]  Jung,et al.  Spatiotemporal stochastic resonance in excitable media. , 1995, Physical review letters.

[108]  Harald Engel,et al.  Feedback-mediated control of spiral waves , 2004 .

[109]  Mikhailov,et al.  Bifurcation to traveling spots in reaction-diffusion systems. , 1994, Physical review letters.

[110]  Kurt Wiesenfeld,et al.  Controlling Stochastic Resonance , 1999 .

[111]  E Schöll,et al.  Comparison of time-delayed feedback schemes for spatiotemporal control of chaos in a reaction-diffusion system with global coupling. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  Werner Ebeling,et al.  Stochastic motion of the propagating front in bistable media , 1983 .

[113]  L. Schimansky-Geier,et al.  Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. , 2005, Chaos.

[114]  Q Ouyang,et al.  Transition from spirals to defect-mediated turbulence driven by a doppler instability. , 2000, Physical review letters.

[115]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[116]  Nicolas Brunel,et al.  Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons , 2002, Neural Computation.

[117]  Guanrong Chen,et al.  LINEAR TIME-DELAY FEEDBACK CONTROL OF A PATHOLOGICAL RHYTHM IN A CARDIAC CONDUCTION MODEL , 1997 .

[118]  Werner Ebeling,et al.  Effect of Fluctuation on Plane Front Propagation in Bistable Nonequilibrium Systems , 1983 .

[119]  Peter Hänggi,et al.  Introduction: 100 years of Brownian motion. , 2005, Chaos.

[120]  J. M. Sancho,et al.  Analytical and numerical studies of multiplicative noise , 1982 .

[121]  István Z Kiss,et al.  Experiments on coherence resonance: noisy precursors to Hopf bifurcations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  Don S. Lemonsa Paul Langevin ’ s 1908 paper ‘ ‘ On the Theory of Brownian Motion ’ ’ [ ‘ ‘ Sur la the ́ orie du mouvement brownien , 1997 .

[123]  J. Tyson What Everyone Should Know About the Belousov-Zhabotinsky Reaction , 1994 .

[124]  L. Tsimring,et al.  Noise-induced dynamics in bistable systems with delay. , 2001, Physical review letters.

[125]  Meng Zhan,et al.  Pattern formation of spiral waves in an inhomogeneous medium with small-world connections. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[126]  J. M. Sancho,et al.  Regular wave propagation out of noise in chemical active media. , 2001, Physical review letters.

[127]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[128]  Z. Hou,et al.  Noise-induced oscillation and stochastic resonance in an autonomous chemical reaction system. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.