Recoil experiments determine the eigenmodes of viscoelastic fluids

We experimentally investigate the transient recoil dynamics of a colloidal probe particle in a viscoelastic fluid after the driving force acting on the probe is suddenly removed. The corresponding recoil displays two distinct timescales which are in excellent agreement with a microscopic model which considers the probe particle to be coupled to two bath particles via harmonic springs. Notably, this model exhibits two sets of eigenmodes which correspond to reciprocal and non-reciprocal force conditions and which can be experimentally confirmed in our experiments. We expect our findings to be relevant under conditions where particles are exposed to non-steady shear forces as this is encountered e.g. in microfluidic sorting devices or the intermittent motion of motile bacteria within their natural viscoelastic surrounding.

[1]  C. Bechinger,et al.  Two step micro-rheological behavior in a viscoelastic fluid. , 2021, The Journal of chemical physics.

[2]  S. Klapp,et al.  Correlation functions of non-Markovian systems out of equilibrium: analytical expressions beyond single-exponential memory , 2020, Journal of Statistical Mechanics: Theory and Experiment.

[3]  Kathryn E. Regan,et al.  Optical Tweezers Microrheology Maps the Dynamics of Strain-Induced Local Inhomogeneities in Entangled Polymers. , 2019, Physical review letters.

[4]  R. Robertson-Anderson,et al.  Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications. , 2018, ACS macro letters.

[5]  R. Fitzpatrick,et al.  Synergistic Interactions Between DNA and Actin Trigger Emergent Viscoelastic Behavior. , 2018, Physical review letters.

[6]  C. Schroeder,et al.  Dynamically Heterogeneous Relaxation of Entangled Polymer Chains. , 2018, Physical review letters.

[7]  G. Grest,et al.  Nanorheology of Entangled Polymer Melts. , 2018, Physical review letters.

[8]  M. Beil,et al.  Active microrheology with optical tweezers: a versatile tool to investigate anisotropies in intermediate filament networks , 2016 .

[9]  R. Robertson-Anderson,et al.  Entangled F-actin displays a unique crossover to microscale nonlinearity dominated by entanglement segment dynamics. , 2015, Soft matter.

[10]  Clemens Bechinger,et al.  Transient dynamics of a colloidal particle driven through a viscoelastic fluid , 2015, 1505.06674.

[11]  R. Robertson-Anderson,et al.  Nonlinear microrheology reveals entanglement-driven molecular-level viscoelasticity of concentrated DNA. , 2014, Physical review letters.

[12]  A. Sen,et al.  Microscopic origin of shear relaxation in a model viscoelastic liquid. , 2014, Physical review letters.

[13]  Douglas E. Smith,et al.  Onset of Non-Continuum Effects in Microrheology of Entangled Polymer Solutions , 2014 .

[14]  Shi‐Qing Wang,et al.  New Experiments for Improved Theoretical Description of Nonlinear Rheology of Entangled Polymers , 2013 .

[15]  W. Poon,et al.  Small-world rheology: an introduction to probe-based active microrheology. , 2011, Physical chemistry chemical physics : PCCP.

[16]  T. Mason,et al.  Optically driven nonlinear microrheology of gelatin. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  CÃ Cile A Dreiss Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. , 2007, Soft matter.

[18]  D A Weitz,et al.  Microrheology probes length scale dependent rheology. , 2006, Physical review letters.

[19]  J. van der Gucht,et al.  Brownian particles in supramolecular polymer solutions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  M. Solomon,et al.  Probe size effects on the microrheology of associating polymer solutions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  L. Walker Rheology and structure of worm-like micelles , 2001 .

[22]  van Zanten JH,et al.  Brownian motion in a single relaxation time maxwell fluid , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  T. Lubensky,et al.  One- and two-particle microrheology , 2000, Physical review letters.

[24]  Denis Wirtz,et al.  Particle Tracking Microrheology of Complex Fluids , 1997 .

[25]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[26]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[27]  Michael E. Cates,et al.  REVIEW ARTICLE: Statics and dynamics of worm-like surfactant micelles , 1990 .

[28]  H. Rehage,et al.  Rheological properties of viscoelastic surfactant systems , 1988 .

[29]  M. Delsanti,et al.  Viscosity and longest relaxation time of semi-dilute polymer solutions: II. Theta solvent , 1983 .

[30]  P. G. de Gennes,et al.  Dynamics of Entangled Polymer Solutions. I. The Rouse Model , 1976 .

[31]  Todd M. Squires,et al.  Fluid Mechanics of Microrheology , 2010 .

[32]  David A. Weitz,et al.  Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids , 1997 .