The cascading of the LZW compression algorithm with arithmetic coding

Both algorithms are adaptive and require no extra communication from the encoder to the decoder. The authors present a scheme to cascade these into an adaptive algorithm which achieves higher compression ratio and is appropriate for communication. Different refinements of the cascading are tested to optimize the secondary compression.<<ETX>>

[1]  James A. Storer,et al.  Parallel algorithms for data compression , 1985, JACM.

[2]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[3]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[4]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[5]  Glen G. Langdon,et al.  Arithmetic Coding , 1979 .

[6]  Michael F. Lynch,et al.  Compression of bibliographic files using an adaptation of run-length coding , 1973, Inf. Storage Retr..

[7]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[8]  James A. Storer,et al.  The macro model for data compression (Extended Abstract) , 1978, STOC '78.

[9]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[10]  James A. Storer,et al.  Data Compression: Methods and Theory , 1987 .

[11]  Yehoshua Perl,et al.  Cascading LZW Algorithm with Huffman Coding: A Variable to Variable Length Compression Algorithm , 1989, Great Lakes Computer Science Conference.

[12]  Jorma Rissanen,et al.  Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..

[13]  Yehoshua Perl,et al.  Arithmetic Interpolation Search for Alphabetic Tables , 1992, IEEE Trans. Computers.

[14]  James A. Storer,et al.  Data compression via textual substitution , 1982, JACM.

[15]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.