Computation of the real structured singular value via polytopic polynomials

For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, an iterative algorithm for computing the real structured singular value is proposed. The algorithm requires neither frequency search nor Routh's array symbolic manipulations and allows the dependency among the elements of the parameter vector. Moreover, the number of the independent parameters in the parameter vector is not limited to three as is required by many existing structured singular-value computation algorithms.

[1]  Ricardo S. Sanchez Pena,et al.  A General Program to Compute the Multivariable Stability Margin for Systems with Parametric Uncertainty , 1988, 1988 American Control Conference.

[2]  S. Bhattacharyya,et al.  Robust control with structure perturbations , 1988 .

[3]  Michael Athans,et al.  Gain and phase margin for multiloop LQG regulators , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[4]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[5]  John Doyle,et al.  Structured uncertainty in control system design , 1985, 1985 24th IEEE Conference on Decision and Control.

[6]  S. Banda,et al.  Fast stability checking for the convex combination of stable polynomials , 1990 .

[7]  B. Wie,et al.  Real Parameter Margin Computation for Uncertain Structural Dynamic Systems , 1992 .

[8]  Richard D. Jones STRUCTURED SINGULAR VALUE ANALYSIS FOR REAL PARAMETER VARIATIONS , 1987 .

[9]  J. Doyle,et al.  Minimizing Conservativeness of Robustness Singular Values , 1984 .

[10]  Thomas Kailath,et al.  Linear Systems , 1980 .

[11]  Ricardo S. Sanchez Pena,et al.  Fast Computation of the Multivariable Stability Margin for Real Interrelated Uncertain Parameters , 1988 .

[12]  M. Safonov,et al.  Exact calculation of the multiloop stability margin , 1988 .

[13]  M. ShabbarHussain,et al.  On robustness bounds in linear control system design , 1989, IEEE 1989 International Conference on Systems Engineering.

[14]  K. Wei,et al.  Invariance of a strict Hurwitz property for uncertain polynomials with dependent coefficients , 1987 .

[15]  A. Tits,et al.  Characterization and efficient computation of the structured singular value , 1986 .

[16]  Geometric Aspects in the Computation of the Structured Singular Value , 1986, 1986 American Control Conference.

[17]  Stephen P. Boyd,et al.  Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems , 1991, International Journal of Robust and Nonlinear Control.

[18]  Huang Lin,et al.  Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.

[19]  L. Shaw,et al.  System Theory. , 1965, Science.

[20]  Athanasios Sideris,et al.  Fast Computation of the Multivariable Stability Margin for Real Interrelated Uncertain Parameters , 1988, 1988 American Control Conference.

[21]  C. Desoer,et al.  Linear System Theory , 1963 .

[22]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[23]  B. R. Barmish,et al.  Stability of a polytope of matrices: counterexamples , 1988 .