Certifying Global Optimality of Ac-Opf Solutions Via the Cs-Tssos Hierarchy

In this paper, we report the experimental results on certifying 1% global optimality of solutions of AC-OPF instances from PGLiB with up to 24464 buses via the CS-TSSOS hierarchy – a moment-SOS based hierarchy that exploits both correlative and term sparsity, which can provide tighter SDP relaxations than Shor’s relaxation. Our numerical experiments demonstrate that the CS-TSSOS hierarchy scales well with the problem size and is indeed useful in certifying 1% global optimality of solutions for large-scale real world problem; e.g., the AC-OPF problem. In particular, we are able to certify 1% global optimality for an AC-OPF instance with 6515 buses involving 14398 real variables and 63577 constraints.

[1]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[2]  K. Fujisawa,et al.  Semidefinite programming for optimal power flow problems , 2008 .

[3]  Victor Magron,et al.  Chordal-TSSOS: A Moment-SOS Hierarchy That Exploits Term Sparsity with Chordal Extension , 2020, SIAM J. Optim..

[4]  Carleton Coffrin,et al.  The QC Relaxation: A Theoretical and Computational Study on Optimal Power Flow , 2017, IEEE Transactions on Power Systems.

[5]  Jie Wang,et al.  TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization , 2021, ArXiv.

[6]  Jie Wang,et al.  TSSOS: A Moment-SOS hierarchy that exploits term sparsity , 2020 .

[7]  WächterAndreas,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006 .

[8]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations for Polynomial Optimization with Sparsity , 2006, ICMS.

[9]  J. Gallier Quadratic Optimization Problems , 2020, Linear Algebra and Optimization with Applications to Machine Learning.

[10]  Jie Wang,et al.  CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization , 2020, ArXiv.

[11]  Claudio Gentile,et al.  Mathematical programming formulations for the alternating current optimal power flow problem , 2020, 4OR.

[12]  Daniel K. Molzahn,et al.  Lasserre Hierarchy for Large Scale Polynomial Optimization in Real and Complex Variables , 2017, SIAM J. Optim..

[13]  WakiHayato,et al.  Sums of Squares and Semidefinite Program Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2006 .

[14]  Jakub Marecek,et al.  Optimal Power Flow as a Polynomial Optimization Problem , 2014, IEEE Transactions on Power Systems.

[15]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[16]  H. Nagarajan,et al.  Proving global optimality of ACOPF solutions , 2019, Electric Power Systems Research.

[17]  Heng Yang,et al.  One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers , 2020, NeurIPS.

[18]  Jie Wang,et al.  Exploiting Sparsity in Complex Polynomial Optimization , 2021, J. Optim. Theory Appl..

[19]  Monique Laurent,et al.  Sum-of-squares hierarchies for binary polynomial optimization , 2020, Mathematical Programming.

[20]  George A. Constantinides,et al.  Certified Roundoff Error Bounds Using Semidefinite Programming , 2015, ACM Trans. Math. Softw..

[21]  R. Jabr Radial distribution load flow using conic programming , 2006, IEEE Transactions on Power Systems.

[22]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[23]  Victor Magron,et al.  Semialgebraic Optimization for Lipschitz Constants of ReLU Networks , 2020, NeurIPS.

[24]  Thorsten Theobald,et al.  Exploiting Symmetries in SDP-Relaxations for Polynomial Optimization , 2011, Math. Oper. Res..

[25]  M. Ferris,et al.  The Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms , 2019, ArXiv.

[26]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..