Lithium silicide nanocrystals: synthesis, chemical stability, thermal stability, and carbon encapsulation.

Lithium silicide (LixSi) is the lithiated form of silicon, one of the most promising anode materials for the next generation of lithium-ion batteries (LIBs). In contrast to silicon, LixSi has not been well studied. Herein we report a facile high-energy ball-milling-based synthesis of four phase-pure LixSi (x = 4.4, 3.75, 3.25, and 2.33), using hexane as the lubricant. Surprisingly, the obtained Li3.75Si phase shows significant downward shifts in all X-ray diffraction peak positions, compared with the standard. Our interpretation is that the high-energy ball-mill-synthesized Li3.75Si presents smaller internal pressures and larger lattice constants. The chemical-stability study reveals that only surface reactions occur after Li4.4Si and Li3.75Si are immersed in several battery-assembly-related chemicals. The thermal-stability study shows that Li4.4Si is stable up to 350 °C and Li3.75Si is stable up to 200 °C. This remarkable thermal stability of Li3.75Si is in stark contrast to the long-observed metastability for electrochemically synthesized Li3.75Si. The carbon encapsulation of Li4.4Si has also been studied for its potential applications in LIBs.

[1]  H. Usui,et al.  Gadolinium silicide/silicon composite with excellent high-rate performance as lithium-ion battery anode , 2014 .

[2]  C. J. Kerr,et al.  Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy , 2014, Nature Communications.

[3]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[4]  Yi Cui,et al.  Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries , 2013 .

[5]  T. Fässler,et al.  Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si , 2013 .

[6]  Jason Graetz,et al.  Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In‐Situ Synchrotron X‐Ray Diffraction and Electron Energy‐Loss Spectroscopy , 2013 .

[7]  Guihua Yu,et al.  Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. , 2013, Nano letters.

[8]  Mengyun Nie,et al.  ANODE SOLID ELECTROLYTE INTERPHASE (SEI) OF LITHIUM ION BATTERY CHARACTERIZED BY MICROSCOPY AND SPECTROSCOPY , 2013 .

[9]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[10]  Thomas A. Yersak,et al.  Conformal Coatings of Cyclized‐PAN for Mechanically Resilient Si nano‐Composite Anodes , 2013 .

[11]  T. Fässler,et al.  Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .

[12]  A. Jain,et al.  Destabilization of LiH by Li Insertion into Ge , 2013 .

[13]  Li-Jun Wan,et al.  High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte , 2013 .

[14]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[15]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[16]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[17]  L. Archer,et al.  Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. , 2013, Journal of the American Chemical Society.

[18]  Xianglong Li,et al.  The dimensionality of Sn anodes in Li-ion batteries , 2012 .

[19]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[20]  Rui-jun Ma,et al.  Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries. , 2012, The journal of physical chemistry letters.

[21]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[22]  Ting Zhu,et al.  In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures , 2012 .

[23]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[24]  Seong‐Hyeon Hong,et al.  High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries , 2012 .

[25]  Ji‐Guang Zhang,et al.  Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes , 2012 .

[26]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[27]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[28]  P. Kohl,et al.  Silicon nanowire anode: Improved battery life with capacity-limited cycling , 2012 .

[29]  Y. Chabal,et al.  Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries , 2012 .

[30]  Martin Winter,et al.  Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR. , 2012, Physical chemistry chemical physics : PCCP.

[31]  M. Winter,et al.  Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. , 2012, Solid state nuclear magnetic resonance.

[32]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[33]  Bruno Scrosati,et al.  A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery , 2012 .

[34]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[35]  Doron Aurbach,et al.  Rechargeable lithiated silicon–sulfur (SLS) battery prototypes , 2012 .

[36]  Jun Chen,et al.  A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries , 2011 .

[37]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[38]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[39]  H. Ghassemi,et al.  In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. , 2011, ACS nano.

[40]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[41]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[42]  M. Winter,et al.  NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries , 2011 .

[43]  Jun Liu,et al.  Stabilization of Silicon Anode for Li-Ion Batteries , 2010 .

[44]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[45]  Xilin Chen,et al.  Carbon scaffold structured silicon anodes for lithium-ion batteries , 2010 .

[46]  Yong‐Mook Kang,et al.  Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery , 2010 .

[47]  P. Kumta,et al.  In situ electrochemical synthesis of lithiated silicon-carbon based composites anode materials for lithium ion batteries , 2009 .

[48]  R. Penner,et al.  Wafer-scale patterning of lead telluride nanowires: structure, characterization, and electrical properties. , 2009, ACS nano.

[49]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[50]  Y. Chung,et al.  Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance , 2009 .

[51]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[52]  Phl Peter Notten,et al.  Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study , 2009 .

[53]  L. Trahey,et al.  Nanocomposites Derived from Phenol-Functionalized Si Nanoparticles for High Performance Lithium Ion Battery Anodes , 2009 .

[54]  H. Okamoto Li-Si (Lithium-Silicon) , 2009 .

[55]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[56]  Y. Nho,et al.  Preparation of polymer-coated separators using an electron beam irradiation , 2008 .

[57]  U. Starke,et al.  Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes , 2008 .

[58]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[59]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[60]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[61]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[62]  J. Dahn,et al.  Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature , 2006 .

[63]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[64]  N. Machida,et al.  Preparation of Li4.4GexSi1−x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries , 2004 .

[65]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[66]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[67]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[68]  Muyu Zhao,et al.  Size-dependent melting point of noble metals , 2003 .

[69]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[70]  Min Park,et al.  Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries , 2003 .

[71]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[72]  N. Machida,et al.  Preparation of Li4.4Si Alloy by Use of Mechanical Milling Methods and Its Properties as Negative Electrodes in Lithium Cells , 2001 .

[73]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[74]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[75]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[76]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[77]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .