Accelerated proximity queries between convex polyhedra by multi-level Voronoi marching

We present an accelerated proximity query algorithm between moving convex polyhedra. The algorithm combines Voronoi-based feature tracking with a multi-level-of-detail representation, in order to adapt to the variation in levels of coherence and speed up the computation. It provides a progressive refinement framework for collision detection and distance queries. We have implemented our algorithm and have observed significant performance improvements in our experiments, especially on scenarios where the coherence is low.

[1]  David G. Kirkpatrick,et al.  Determining the Separation of Preprocessed Polyhedra - A Unified Approach , 1990, ICALP.

[2]  Stephen Cameron,et al.  Enhancing GJK: computing minimum and penetration distances between convex polyhedra , 1997, Proceedings of International Conference on Robotics and Automation.

[3]  David Salesin,et al.  Wavelets for computer graphics: a primer. 2 , 1995, IEEE Computer Graphics and Applications.

[4]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[5]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[6]  Kok-Lim Low,et al.  Computing bounding volume hierarchies using model simplification , 1999, SI3D.

[7]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[8]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  Hanan Samet,et al.  Spatial Data Structures , 1995, Modern Database Systems.

[10]  Leonidas J. Guibas,et al.  H-Walk: hierarchical distance computation for moving convex bodies , 1999, SCG '99.

[11]  Ming C. Lin,et al.  A fast algorithm for incremental distance calculation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[12]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[13]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[14]  Leonidas J. Guibas,et al.  Separation-sensitive collision detection for convex objects , 1998, SODA '99.

[15]  E. J. Stollnitz,et al.  Wavelets for Computer Graphics : A Primer , 1994 .

[16]  Philip M. Hubbard,et al.  Interactive collision detection , 1993, Proceedings of 1993 IEEE Research Properties in Virtual Reality Symposium.

[17]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[18]  Stephen Cameron,et al.  Approximation hierarchies and S-bounds , 1991, SMA '91.

[19]  Herbert Edelsbrunner,et al.  Computing the Extreme Distances Between Two Convex Polygons , 1985, J. Algorithms.

[20]  Ming C. Lin,et al.  Fast volume-preserving free-form deformation using multi-level optimization , 2000, Comput. Aided Des..

[21]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[22]  Ming C. Lin,et al.  Efficient collision detection for animation and robotics , 1993 .

[23]  David L. Zeltzer,et al.  A New Model for Efficient Dynamic Simulation , 1993 .

[24]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[25]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[26]  Ming C. Lin,et al.  Accelerated Proximity Queries Between Convex Polyhedra By , 2000 .

[27]  Sean Quinlan,et al.  Efficient distance computation between non-convex objects , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[28]  Ming C. Lin,et al.  Fast volume-preserving free form deformation using multi-level optimization , 1999, SMA '99.

[29]  S B MitchellJoseph,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998 .