Discretized Fast–Slow Systems with Canards in Two Dimensions

[1]  H. Jard'on-Kojakhmetov,et al.  Extended and Symmetric Loss of Stability for Canards in Planar Fast-Slow Maps , 2019, SIAM J. Appl. Dyn. Syst..

[2]  H. Jardón-Kojakhmetov,et al.  Controlling Canard Cycles , 2019, Journal of Dynamical and Control Systems.

[3]  C. Kuehn,et al.  Discretized fast–slow systems near pitchfork singularities , 2019, Journal of Difference Equations and Applications.

[4]  N. Euler New results on integrability of the Kahan-Hirota-Kimura discretizations , 2018, Nonlinear Systems and Their Remarkable Mathematical Structures.

[5]  C. Kuehn,et al.  Discretized fast-slow systems near transcritical singularities , 2018, Nonlinearity.

[6]  Y. Suris,et al.  New results on integrability of the Kahan-Hirota-Kimura discretizations , 2018, 1805.12490.

[7]  M. Wechselberger,et al.  Neural Excitability and Singular Bifurcations , 2015, Journal of mathematical neuroscience.

[8]  C. Kuehn Multiple Time Scale Dynamics , 2015 .

[9]  C. Kuehn A remark on geometric desingularization of a non-hyperbolic point using hyperbolic space , 2014, 1403.3789.

[10]  Daniel Stoffer,et al.  Invariant Manifolds in Discrete and Continuous Dynamical Systems , 2013 .

[11]  Elena Celledoni,et al.  Geometric properties of Kahan's method , 2012, 1209.1164.

[12]  Christian Kuehn,et al.  Normal hyperbolicity and unbounded critical manifolds , 2012, 1204.0947.

[13]  John Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[14]  Matteo Petrera,et al.  On integrability of Hirota-Kimura type discretizations , 2010, 1008.1040.

[15]  P. Maesschalck,et al.  Singular perturbations and vanishing passage through a turning point , 2010 .

[16]  Christian Kuehn,et al.  From First Lyapunov Coefficients to Maximal Canards , 2010, Int. J. Bifurc. Chaos.

[17]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[18]  Peter Szmolyan,et al.  Geometric singular perturbation analysis of an autocatalator model , 2009 .

[19]  Anatoly Neishtadt,et al.  On stability loss delay for dynamical bifurcations , 2009 .

[20]  Bernd Krauskopf,et al.  The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..

[21]  Matteo Petrera,et al.  On Integrability of Hirota–Kimura-Type Discretizations: Experimental Study of the Discrete Clebsch System , 2008, Exp. Math..

[22]  Y. Kuznetsov,et al.  New features of the software MatCont for bifurcation analysis of dynamical systems , 2008 .

[23]  Joseph W. Durham,et al.  Feedback control of canards. , 2008, Chaos.

[24]  Christian Mira,et al.  Slow-fast Dynamics Generated by Noninvertible Plane Maps , 2005, Int. J. Bifurc. Chaos.

[25]  Freddy Dumortier,et al.  Time analysis and entry–exit relation near planar turning points , 2005 .

[26]  R. Schäfke,et al.  Bifurcation delay and difference equations , 2003 .

[27]  Martin Wechselberger,et al.  Extending Melnikov theory to invariant manifolds on non-compact domains , 2002 .

[28]  Peter Szmolyan,et al.  Extending slow manifolds near transcritical and pitchfork singularities , 2001 .

[29]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[30]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[31]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .

[32]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[33]  C. Baesens,et al.  Gevrey series and dynamic bifurcations for analytic slow-fast mappings , 1995 .

[34]  C. Baesens,et al.  Slow sweep through a period-doubling cascade: delayed bifurcations and renormalisation , 1991 .

[35]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[36]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[37]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[38]  S. Wiggins Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .

[39]  Freddy Dumortier,et al.  Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .

[40]  A. Fruchard Canards et râteaux , 1992 .

[41]  A. Fruchard Existence of bifurcation delay: The discrete case , 1991 .

[42]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[43]  W. Kyner Invariant Manifolds , 1961 .