Effects of low and moderate refractive errors on chromatic pupillometry

[1]  Lisa A. Ostrin,et al.  The ipRGC-Driven Pupil Response with Light Exposure, Refractive Error, and Sleep. , 2018, Optometry and vision science : official publication of the American Academy of Optometry.

[2]  Raymond P. Najjar,et al.  Pupillary Responses to Full-Field Chromatic Stimuli Are Reduced in Patients with Early-Stage Primary Open-Angle Glaucoma. , 2018, Ophthalmology.

[3]  T. Aung,et al.  Pupillary responses to light are not affected by narrow irido-corneal angles , 2017, Scientific Reports.

[4]  Jennifer I. Lim,et al.  Pupillary responses in non-proliferative diabetic retinopathy , 2017, Scientific Reports.

[5]  T. Aung,et al.  Pupillary responses to short-wavelength light are preserved in aging , 2017, Scientific Reports.

[6]  James Q. Truong,et al.  Influence of refractive error on pupillary dynamics in the normal and mild traumatic brain injury (mTBI) populations , 2017, Journal of optometry.

[7]  Mohamad O Mhajna,et al.  Chromatic Multifocal Pupillometer for Objective Perimetry and Diagnosis of Patients with Retinitis Pigmentosa. , 2016, Ophthalmology.

[8]  Andrew J. Zele,et al.  Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma , 2016, Scientific Reports.

[9]  M. Gobbe,et al.  The Effects of Age, Refractive Status, and Luminance on Pupil Size , 2016, Optometry and vision science : official publication of the American Academy of Optometry.

[10]  Chris A. Johnson,et al.  Visual field defect classification in the Zhongshan Ophthalmic Center–Brien Holden Vision Institute High Myopia Registry Study , 2016, British Journal of Ophthalmology.

[11]  K. Knoblauch,et al.  Visual Psychophysics and Physiological Optics Heterochromatic Flicker Photometry for Objective Lens Density Quantification , 2016 .

[12]  Andrew J. Zele,et al.  Effect of Age and Refractive Error on the Melanopsin Mediated Post-Illumination Pupil Response (PIPR) , 2015, Scientific Reports.

[13]  Andrew J. Zele,et al.  Melanopsin-Mediated Post-Illumination Pupil Response in Early Age-Related Macular Degeneration. , 2015, Investigative ophthalmology & visual science.

[14]  Dan Milea,et al.  Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity. , 2015, Ophthalmology.

[15]  L. Gray,et al.  Is Pupil Diameter Influenced by Refractive Error? , 2015, Optometry and vision science : official publication of the American Academy of Optometry.

[16]  C. Tsika,et al.  Differential monocular vs. binocular pupil responses from melanopsin-based photoreception in patients with anterior ischemic optic neuropathy , 2015, Scientific Reports.

[17]  Andrew J. Zele,et al.  The Post-Illumination Pupil Response (PIPR). , 2015, Investigative ophthalmology & visual science.

[18]  Andrew J. Zele,et al.  Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells in Retinal Disease , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[19]  Ankit Mathur,et al.  Influences of luminance and accommodation stimuli on pupil size and pupil center location. , 2014, Investigative ophthalmology & visual science.

[20]  Y. Yoo,et al.  Refractive errors in a rural Korean adult population: the Namil Study , 2013, Eye.

[21]  D. Hood,et al.  The pupil light reflex in Leber's hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells. , 2013, Investigative ophthalmology & visual science.

[22]  Robert J. Lucas,et al.  Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades , 2013, Proceedings of the Royal Society B: Biological Sciences.

[23]  Mohamad O Mhajna,et al.  Pupillometer-based objective chromatic perimetry in normal eyes and patients with retinal photoreceptor dystrophies. , 2013, Investigative ophthalmology & visual science.

[24]  T. Wong,et al.  Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study. , 2013, Investigative ophthalmology & visual science.

[25]  Fei Yu,et al.  Comparative regional pupillography as a noninvasive biosensor screening method for diabetic retinopathy. , 2013, Investigative ophthalmology & visual science.

[26]  Kenneth Knoblauch,et al.  Refined flicker photometry technique to measure ocular lens density. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  R. Weinreb,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes. , 2012, Investigative ophthalmology & visual science.

[28]  Charles A Czeisler,et al.  Melanopsin and Rod–Cone Photoreceptors Play Different Roles in Mediating Pupillary Light Responses during Exposure to Continuous Light in Humans , 2012, The Journal of Neuroscience.

[29]  J. Jonas,et al.  Ocular Axial Length and Its Associations in Chinese: The Beijing Eye Study , 2012, PloS one.

[30]  T. Wong,et al.  Variation in prevalence of myopia between generations of migrant indians living in Singapore. , 2012, American journal of ophthalmology.

[31]  Donald C Hood,et al.  Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. , 2011, Investigative ophthalmology & visual science.

[32]  Andrew J. Zele,et al.  Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. , 2011, Investigative ophthalmology & visual science.

[33]  Aki Kawasaki,et al.  Chromatic pupillometry in patients with retinitis pigmentosa. , 2011, Ophthalmology.

[34]  V. Carelli,et al.  Melanopsin-expressing retinal ganglion cells: implications for human diseases , 2011, Vision Research.

[35]  D. Milea,et al.  Selective wavelength pupillometry in Leber hereditary optic neuropathy , 2010, Clinical & experimental ophthalmology.

[36]  N. Çağıl,et al.  Refractive Error May Influence Mesopic Pupil Size , 2010, Current eye research.

[37]  Aki Kawasaki,et al.  Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. , 2009, Ophthalmology.

[38]  Liang Xu,et al.  The Beijing Eye Study , 2009, Acta ophthalmologica.

[39]  T. Badea,et al.  Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision , 2008, Nature.

[40]  J. Jonas,et al.  High myopia and glaucoma susceptibility the Beijing Eye Study. , 2007, Ophthalmology.

[41]  K. Schmid,et al.  Delayed mfERG responses in myopia , 2006, Vision Research.

[42]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[43]  Frank Schaeffel,et al.  Effects of longitudinal chromatic aberration on accommodation and emmetropization , 2002, Vision Research.

[44]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[45]  T. Lim,et al.  Does Education Explain Ethnic Differences in Myopia Prevalence? A Population-Based Study of Young Adult Males in Singapore , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[46]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[47]  J. J. Wang,et al.  The relationship between glaucoma and myopia: the Blue Mountains Eye Study. , 1999, Ophthalmology.

[48]  Y. Shih,et al.  Epidemiologic study of ocular refraction among schoolchildren in Taiwan in 1995. , 1999, Optometry and vision science : official publication of the American Academy of Optometry.

[49]  E. Adachi-Usami,et al.  Multifocal electroretinogram in myopia. , 1997, Investigative ophthalmology & visual science.

[50]  J Katz,et al.  Prevalence and risk factors for refractive errors in an adult inner city population. , 1997, Investigative ophthalmology & visual science.

[51]  R. Klein,et al.  Refractive status in the Beaver Dam Eye Study. , 1994, Investigative ophthalmology & visual science.

[52]  D. Whitaker,et al.  Factors affecting light-adapted pupil size in normal human subjects. , 1994, Investigative ophthalmology & visual science.

[53]  Jeremy Nathans,et al.  Absorption spectra of human cone pigments , 1992, Nature.

[54]  R. Jones Do women and myopes have larger pupils? , 1990, Investigative ophthalmology & visual science.

[55]  E F FINCHAM,et al.  The Accommodation Reflex and its Stimulus * , 1951, The Journal of physiology.

[56]  F. W. Weymouth,et al.  Pupil size in ametropia. , 1949, Journal of applied physiology.

[57]  D. Mackey,et al.  Review of null hypothesis significance testing in the ophthalmic literature: are most ‘significant’ P values false positives? , 2016, Clinical & experimental ophthalmology.

[58]  George Smith,et al.  Chromatic dispersions of the ocular media of human eyes. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  D. Gaasterland,et al.  Investigative Ophthalmology & Visual Science , 1978 .

[60]  D. Karlin,et al.  Axial length measurements and fundus changes of the myopic eye. I. The posterior fundus. , 1970, Transactions of the American Ophthalmological Society.