Morphologically Specialized Termite Castes and Advanced Sociality in the Early Cretaceous

[1]  D. Grimaldi,et al.  Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous , 2016, Current Biology.

[2]  J. Witte The Ants , 2016 .

[3]  G. Kuperminc,et al.  Acknowledgments , 1991, European Journal of Psychology of Education.

[4]  K. Thevan,et al.  Colony Structure of the Weaver Ant, Oecophylla smaragdina (Fabricius) (Hymenoptera: Formicidae) , 2014 .

[5]  P. Pequeno Negative Effects of Azteca Ants on the Distribution of the Termite Neocapritermes braziliensis in Central Amazonia , 2014 .

[6]  Martin A Nowak,et al.  Natural selection drives the evolution of ant life cycles , 2014, Proceedings of the National Academy of Sciences.

[7]  D. Grimaldi,et al.  A Diverse Ant Fauna from the Mid-Cretaceous of Myanmar (Hymenoptera: Formicidae) , 2014, PloS one.

[8]  C. Moreau,et al.  TESTING THE MUSEUM VERSUS CRADLE TROPICAL BIOLOGICAL DIVERSITY HYPOTHESIS: PHYLOGENY, DIVERSIFICATION, AND ANCESTRAL BIOGEOGRAPHIC RANGE EVOLUTION OF THE ANTS , 2013, Evolution; international journal of organic evolution.

[9]  D. Grimaldi,et al.  A new genus of highly specialized ants in Cretaceous Burmese amber (Hymenoptera: Formicidae). , 2013, Zootaxa.

[10]  D. Grimaldi,et al.  Treatise on the Isoptera of the World , 2013 .

[11]  D. Grimaldi,et al.  Treatise on the Isoptera of the World , 2013 .

[12]  D. Grimaldi,et al.  Age constraint on Burmese amber based on U–Pb dating of zircons , 2012 .

[13]  D. Grimaldi,et al.  Rediscovery of the Bizarre Cretaceous Ant Haidomyrmex Dlussky (Hymenoptera: Formicidae), with Two New Species , 2012 .

[14]  Current Biology , 2012, Current Biology.

[15]  M. Nowak,et al.  The evolution of eusociality , 2010, Nature.

[16]  D. Grimaldi,et al.  The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). , 2010, Arthropod structure & development.

[17]  Kumar Krishna,et al.  Additional Distributional Records of Ambystoma Laterale, A. Jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America , 2008 .

[18]  D. Grimaldi,et al.  Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber , 2009 .

[19]  M. Engel,et al.  A giant termite from the Late Miocene of Styria, Austria (Isoptera) , 2009, Naturwissenschaften.

[20]  Pablo A. Goloboff,et al.  TNT, a free program for phylogenetic analysis , 2008 .

[21]  D. Grimaldi,et al.  The Species of Isoptera (Insecta) from The Early Cretaceous Crato Formation: A Revision , 2008 .

[22]  M. Engel Two New Termites in Baltic Amber (Isoptera) , 2008 .

[23]  Brian L. Fisher,et al.  Evaluating alternative hypotheses for the early evolution and diversification of ants , 2006, Proceedings of the National Academy of Sciences.

[24]  Paul M. Choate,et al.  Evolution of the Insects , 2006 .

[25]  C. Moreau,et al.  Phylogeny of the Ants: Diversification in the Age of Angiosperms , 2006, Science.

[26]  M. Engel,et al.  A NEW RECORD OF MASTOTERMES FROM THE EOCENE OF GERMANY (ISOPTERA: MASTOTERMITIDAE) , 2006, Journal of Paleontology.

[27]  D. Grimaldi,et al.  Primitive New Ants in Cretaceous Amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae) , 2005 .

[28]  Marcela I. Cosarinsky,et al.  Comment—Advanced Early Jurassic Termite (Insecta: Isoptera) Nests: Evidence from the Clarens Formation in the Tuli Basin, Southern Africa (Bordy et al., 2004) , 2005 .

[29]  J. Pasteels,et al.  Ontogenetic development and evolution of the worker caste in termites , 1987, Experientia.

[30]  M. Lindauer The social behavior of the bees: a comparative study , 1976, Insectes Sociaux.

[31]  S. Ribeiro,et al.  Predation and interference competition between ants (Hymenoptera: Formicidae) and arboreal termites (Isoptera: Termitidae) , 2005 .

[32]  D. Grimaldi,et al.  The First Cretaceous Rhinotermitidae (Isoptera): A New Species, Genus, and Subfamily in Burmese Amber , 2003 .

[33]  D. Grimaldi,et al.  Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance , 2002 .

[34]  D. Bignell,et al.  Cultivation of Symbiotic Fungi by Termites of the Subfamily Macrotermitinae , 2001 .

[35]  D. Grimaldi,et al.  A formicine in New Jersey cretaceous amber (Hymenoptera: formicidae) and early evolution of the ants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Pasteels,et al.  Community interactions between ants and arboreal-nesting termites in New Guinea coconut plantations , 1999, Insectes Sociaux.

[37]  K. Krishna New fossil species of termites of the subfamily Nasutitermitinae from Dominican and Mexican amber (Isoptera, Termitidae) / Kumar Krishna. American Museum novitates ; no. 3176 , 1996 .

[38]  X. Martínez-Delclòs,et al.  The oldest known record of social insects , 1995, Journal of Paleontology.

[39]  P. Goloboff ESTIMATING CHARACTER WEIGHTS DURING TREE SEARCH , 1993, Cladistics : the international journal of the Willi Hennig Society.

[40]  G. Holton Sociobiology: the new synthesis? , 1977, Newsletter on science, technology & human values.

[41]  C. Brooke Worth,et al.  The Insect Societies , 1973 .

[42]  C. Michener,et al.  Evolution of Sociality in Insects , 1972, The Quarterly Review of Biology.

[43]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[44]  W. M. Wheeler Ecological relations of ponerine and other ants to termites. , 1936 .