Themes in ssDNA recognition by telomere-end protection proteins.

The ends of eukaryotic linear chromosomes are unique structures that require special management by the cell. If left unattended, the ends are inappropriately processed, leading to genomic instability and problems with proliferation. Telomeres are specialized nucleoprotein structures that restore chromosome stability by protecting and maintaining chromosome ends. Proper telomere function is facilitated, in part, by the telomere-end protection (TEP) family of proteins, which targets the 3' single-stranded (ss) overhang region of the telomere via a specialized ssDNA-binding domain (DBD). With the recent availability of the structures of these DBDs, the ssDNA-binding characteristics of TEP proteins can be compared and the common underlying mechanisms of ssDNA recognition identified, thus providing insights into telomere function.

[1]  T. Cech,et al.  The β subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA , 1993, Cell.

[2]  D. Loayza,et al.  DNA Binding Features of Human POT1 , 2004, Journal of Biological Chemistry.

[3]  R. Wellinger,et al.  Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase , 1993, Cell.

[4]  D M Prescott,et al.  The DNA of ciliated protozoa. , 1994 .

[5]  D. Theobald,et al.  Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. , 2004, Journal of molecular biology.

[6]  J. D. Watson Origin of Concatemeric T7DNA , 1972 .

[7]  C. Price,et al.  Cell Cycle Localization, Dimerization, and Binding Domain Architecture of the Telomere Protein cPot1 , 2004, Molecular and Cellular Biology.

[8]  L. Harrington Those dam-aged telomeres! , 2004, Current opinion in genetics & development.

[9]  Dan Liu,et al.  Inside the mammalian telomere interactome: regulation and regulatory activities of telomeres. , 2006, Critical reviews in eukaryotic gene expression.

[10]  T. Hughes,et al.  Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Cech,et al.  Oxytricha telomere-binding protein: DNA-dependent dimerization of the alpha and beta subunits. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  T. Cech,et al.  Telomeric DNA-protein interactions of Oxytricha macronuclear DNA. , 1987, Genes & development.

[13]  J. Shay,et al.  Normal human chromosomes have long G-rich telomeric overhangs at one end. , 1997, Genes & development.

[14]  T. Lange,et al.  Shelterin: the protein complex that shapes and safeguards human telomeres , 2005 .

[15]  T. Cech,et al.  Switching Human Telomerase On and Off with hPOT1 Protein in Vitro* , 2005, Journal of Biological Chemistry.

[16]  T. Cech,et al.  Oxytricha telomeric nucleoprotein complexes reconstituted with synthetic DNA. , 1989, Nucleic acids research.

[17]  D. Lydall,et al.  Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction. , 2001, Nucleic acids research.

[18]  D. Shore,et al.  Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. , 2004, Molecular cell.

[19]  Jan Postberg,et al.  Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo , 2005, Nature Structural &Molecular Biology.

[20]  P. Baumann,et al.  Human Pot1 (Protection of Telomeres) Protein: Cytolocalization, Gene Structure, and Alternative Splicing , 2002, Molecular and Cellular Biology.

[21]  E. Shakirov,et al.  The Arabidopsis Pot1 and Pot2 Proteins Function in Telomere Length Homeostasis and Chromosome End Protection , 2005, Molecular and Cellular Biology.

[22]  R. Wellinger,et al.  The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. , 2004, Genes & development.

[23]  J. Lin,et al.  The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Hughes,et al.  Cdc13 both positively and negatively regulates telomere replication. , 2001, Genes & development.

[25]  E. Podell,et al.  A new model for Schizosaccharomyces pombe telomere recognition: the telomeric single-stranded DNA-binding activity of Pot11-389. , 2006, Journal of molecular biology.

[26]  T R Hughes,et al.  Cdc13p: A Single-Strand Telomeric DNA-Binding Protein with a Dual Role in Yeast Telomere Maintenance , 1996, Science.

[27]  L. Hartwell,et al.  Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint , 1995, Molecular and cellular biology.

[28]  T. Hughes,et al.  Conserved Structure for Single-Stranded Telomeric DNA Recognition , 2002, Science.

[29]  T. Cech,et al.  Properties of the telomeric DNA-binding protein from Oxytricha nova. , 1989, Biochemistry.

[30]  Jack W. Szostak,et al.  DNA sequences of telomeres maintained in yeast , 1984, Nature.

[31]  S. Evans,et al.  Est1 and Cdc13 as comediators of telomerase access. , 1999, Science.

[32]  P. Baumann,et al.  Extended DNA Binding Site in Pot1 Broadens Sequence Specificity to Allow Recognition of Heterogeneous Fission Yeast Telomeres* , 2005, Journal of Biological Chemistry.

[33]  T. Cech,et al.  Sequence-specific and 3'-end selective single-strand DNA binding by the Oxytricha nova telomere end binding protein alpha subunit. , 2003, Biochemistry.

[34]  Deborah S Wuttke,et al.  Prediction of multiple tandem OB-fold domains in telomere end-binding proteins Pot1 and Cdc13. , 2004, Structure.

[35]  C. Autexier,et al.  The structure and function of telomerase reverse transcriptase. , 2006, Annual review of biochemistry.

[36]  M. Price,et al.  Protecting the terminus: t-loops and telomere end-binding proteins , 2003, Cellular and Molecular Life Sciences CMLS.

[37]  S. Classen,et al.  Crystal structure of the N-terminal domain of Oxytricha nova telomere end-binding protein alpha subunit both uncomplexed and complexed with telomeric ssDNA. , 2001, Journal of molecular biology.

[38]  Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. , 2002, Nucleic acids research.

[39]  A. Murzin OB(oligonucleotide/oligosaccharide binding)‐fold: common structural and functional solution for non‐homologous sequences. , 1993, The EMBO journal.

[40]  M. Horvath,et al.  Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain. , 2006, Journal of molecular biology.

[41]  R. Wellinger,et al.  The terminal DNA structure of mammalian chromosomes , 1997, The EMBO journal.

[42]  O. Peersen,et al.  Dimeric structure of the Oxytricha nova telomere end-binding protein α-subunit bound to ssDNA , 2002, Nature Structural Biology.

[43]  S C Schultz,et al.  DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex. , 2001, Journal of molecular biology.

[44]  L. Hartwell,et al.  Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. , 1993, Genetics.

[45]  T. Cech,et al.  Characterization of a G-quartet formation reaction promoted by the beta-subunit of the Oxytricha telomere-binding protein. , 1993, Biochemistry.

[46]  I. Ota,et al.  Binding linkage in a telomere DNA-protein complex at the ends of Oxytricha nova chromosomes. , 2005, Journal of molecular biology.

[47]  D. Prescott,et al.  Topological organization of DNA molecules in the macronucleus of hypotrichous ciliated protozoa , 2004, Chromosome Research.

[48]  P. Baumann,et al.  Human POT1 Facilitates Telomere Elongation by Telomerase , 2003, Current Biology.

[49]  Deborah S Wuttke,et al.  Site-directed mutagenesis reveals the thermodynamic requirements for single-stranded DNA recognition by the telomere-binding protein Cdc13. , 2003, Biochemistry.

[50]  A. Smogorzewska,et al.  Regulation of telomerase by telomeric proteins. , 2004, Annual review of biochemistry.

[51]  Deborah S Wuttke,et al.  Nucleic acid recognition by OB-fold proteins. , 2003, Annual review of biophysics and biomolecular structure.

[52]  M. Horvath,et al.  Crystal Structure of the Oxytricha nova Telomere End Binding Protein Complexed with Single Strand DNA , 1998, Cell.

[53]  T. Cech,et al.  Modulation of telomerase activity by telomere DNA-binding proteins in Oxytricha. , 1998, Genes & development.

[54]  J. Griffith,et al.  Mammalian Telomeres End in a Large Duplex Loop , 1999, Cell.

[55]  J. Doonan,et al.  The pot1+ homologue in Aspergillus nidulans is required for ordering mitotic events , 2004, Journal of Cell Science.

[56]  D. Prescott,et al.  All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3' terminus. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Longhese,et al.  Telomeres and DNA damage checkpoints. , 2005, Biochimie.

[58]  P. Baumann,et al.  Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and Humans , 2001, Science.

[59]  L. S. Cram,et al.  A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Lingner,et al.  Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro , 2005, Molecular and Cellular Biology.

[61]  K. Miller,et al.  Indecent exposure: when telomeres become uncapped. , 2004, Molecular cell.

[62]  T. Cech,et al.  Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection , 2004, Nature Structural &Molecular Biology.

[63]  T. Veldman,et al.  Loss of hPot1 Function Leads to Telomere Instability and a cut-like Phenotype , 2004, Current Biology.

[64]  D. Wuttke,et al.  Identification of the determinants for the specific recognition of single-strand telomeric DNA by Cdc13. , 2006, Biochemistry.

[65]  T. Lange,et al.  POT1 as a terminal transducer of TRF1 telomere length control , 2003, Nature.

[66]  B. Mcclintock The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases , 1938 .

[67]  R. Myers,et al.  Structure and variability of human chromosome ends , 1990, Molecular and cellular biology.

[68]  P. Baumann,et al.  Cooperative binding of single-stranded telomeric DNA by the Pot1 protein of Schizosaccharomyces pombe. , 2002, Biochemistry.

[69]  T. Cech,et al.  Cloning and expression of genes for the Oxytricha telomere-binding protein: Specific subunit interactions in the telomeric complex , 1991, Cell.

[70]  F. Jönsson,et al.  Organization of the macronuclear gene-sized pieces of stichotrichous ciliates into a higher order structure via telomere–matrix interactions , 2004, Chromosome Research.

[71]  S. Teng,et al.  Est1p As a Cell Cycle-Regulated Activator of Telomere-Bound Telomerase , 2002, Science.

[72]  D. Gottschling,et al.  Telomere proteins: Specific recognition and protection of the natural termini of Oxytricha macronuclear DNA , 1986, Cell.

[73]  E. Blackburn Switching and Signaling at the Telomere , 2001, Cell.

[74]  P. Baumann,et al.  DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA , 2003, Nature.

[75]  D. Theobald,et al.  Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end‐binding protein complexes , 2003, The EMBO journal.

[76]  C. Harris,et al.  POT1 and TRF2 Cooperate To Maintain Telomeric Integrity , 2005, Molecular and Cellular Biology.

[77]  T. Cech,et al.  Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. Shay,et al.  POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end , 2005, The EMBO journal.

[79]  W. Hahn,et al.  Telomerase: regulation, function and transformation. , 2005, Critical reviews in oncology/hematology.

[80]  T. Cech,et al.  Oxytricha telomere-binding protein: separable DNA-binding and dimerization domains of the alpha-subunit. , 1993, Genes & development.

[81]  Florence Hediger,et al.  The function of nuclear architecture: a genetic approach. , 2004, Annual review of genetics.

[82]  P. Baumann,et al.  Distinct Requirements for Pot1 in Limiting Telomere Length and Maintaining Chromosome Stability , 2005, Molecular and Cellular Biology.

[83]  D. Shore,et al.  Telomeric chromatin: replicating and wrapping up chromosome ends. , 2001, Current opinion in genetics & development.