Recovering Social Networks from Individual Attributes

One of the most important challenges of network analysis remains the scarcity of reliable information on existing connection structures. This work explores theoretical and empirical methods of inferring directed networks from nodes attributes and from functions of these attributes that are computed for connected nodes. We discuss the conditions, under which an underlying connection structure can be (probabilistically) recovered, and propose a Bayesian recovery algorithm. In an empirical application, we test the algorithm on the data from the European School Survey Project on Alcohol and Other Drugs.

[1]  Yann Bramoullé,et al.  Public goods in networks , 2007, J. Econ. Theory.

[2]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[3]  N. Alon,et al.  Learning a Hidden Matching Combinatorial Identification of Hidden Matchings with Applications to , 2002 .

[4]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[5]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[6]  Gueorgi Kossinets,et al.  Empirical Analysis of an Evolving Social Network , 2006, Science.

[7]  Hana Ross,et al.  The importance of peer effects, cigarette prices and tobacco control policies for youth smoking behavior. , 2005, Journal of health economics.

[8]  Yves Zenou,et al.  Who's Who in Crime Network. Wanted the Key Player , 2004 .

[9]  Dana Angluin,et al.  Learning a Hidden Graph Using O(log n) Queries Per Edge , 2004, COLT.

[10]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[11]  Leonard M. Adleman,et al.  Proof of proposition 3 , 1992 .

[12]  P. Bonacich CELLULAR AUTOMATA FOR THE NETWORK RESEARCHER , 2003 .

[13]  A. Moore,et al.  Dynamic social network analysis using latent space models , 2005, SKDD.

[14]  Yves Zenou,et al.  The strength of weak ties in crime , 2008 .

[15]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp , 1996 .

[16]  Panos M. Pardalos,et al.  Statistical analysis of financial networks , 2005, Comput. Stat. Data Anal..

[17]  Matthew O. Jackson,et al.  Identifying Community Structures from Network Data via Maximum Likelihood Methods , 2009 .

[18]  Edoardo M. Airoldi,et al.  A latent mixed membership model for relational data , 2005, LinkKDD '05.

[19]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[20]  Linyuan Lu,et al.  Random evolution in massive graphs , 2001 .

[21]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[22]  Jeff A. Bilmes,et al.  Learning Hidden Curved Exponential Family Models to Infer Face-to-Face Interaction Networks from Situated Speech Data , 2008, AAAI.

[23]  M. Jackson,et al.  The Effects of Social Networks on Employment and Inequality , 2004 .

[24]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[25]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[26]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[27]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[28]  F. Agneessens,et al.  Local Structural Properties and Attribute Characteristics in 2-mode Networks: p* Models to Map Choices of Theater Events , 2008 .

[29]  Azra C. Ghani,et al.  Measuring sexual partner networks for transmission of sexually transmitted diseases , 1998 .

[30]  Noga Alon,et al.  Learning a Hidden Matching , 2004, SIAM J. Comput..

[31]  Dana Angluin,et al.  Learning a hidden graph using O(logn) queries per edge , 2008, J. Comput. Syst. Sci..

[32]  Christian Tallberg A BAYESIAN APPROACH TO MODELING STOCHASTIC BLOCKSTRUCTURES WITH COVARIATES , 2004 .

[33]  Fan Chung Graham,et al.  Random evolution in massive graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[34]  M. Degroot Optimal Statistical Decisions , 1970 .

[35]  Boleslaw K. Szymanski,et al.  Recursive data mining for masquerade detection and author identification , 2004, Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004..

[36]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[37]  P. Bearman,et al.  Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks1 , 2004, American Journal of Sociology.

[38]  Antoni Calvó-Armengol,et al.  Centre De Referència En Economia Analítica Barcelona Economics Working Paper Series Working Paper Nº 178 Who's Who in Networks. Wanted: the Key Player Who's Who in Networks. Wanted: the Key Player Barcelona Economics Wp Nº 178 , 2022 .

[39]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Goyal,et al.  R&D Networks , 2000 .