Multi-core Implementation of the Tate Pairing over Supersingular Elliptic Curves

This paper describes the design of a fast multi-core library for the cryptographic Tate pairing over supersingular elliptic curves. For the computation of the reduced modified Tate pairing over $\mathbb{F}_{3^{509}}$, we report calculation times of just 2.94 ms and 1.87 ms on the Intel Core2 and Intel Core i7 architectures, respectively. We also try to answer one important design question that arises: how many cores should be utilized for a given application?

[1]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[2]  Iwan M. Duursma,et al.  Tate Pairing Implementation for Hyperelliptic Curves y2 = xp-x + d , 2003, ASIACRYPT.

[3]  Darrel HANKERSON,et al.  Software Implementation of Pairings , 2009, Identity-Based Cryptography.

[4]  Paulo S. L. M. Barreto A note on efficient computation of cube roots in characteristic 3 , 2004, IACR Cryptol. ePrint Arch..

[5]  Francisco Rodríguez-Henríquez,et al.  A Comparison between Hardware Accelerators for the Modified Tate Pairing over F2m and F3m , 2008, Pairing.

[6]  Nicolas Brisebarre,et al.  Algorithms and Arithmetic Operators for Computing the ηT Pairing in Characteristic Three , 2008, IEEE Transactions on Computers.

[7]  Steven D. Galbraith,et al.  Implementing the Tate Pairing , 2002, ANTS.

[8]  Masaaki Shirase,et al.  Efficient Computation of Eta Pairing over Binary Field with Vandermonde Matrix , 2009 .

[9]  Ricardo Dahab,et al.  High-Speed Software Multiplication in F2m , 2000, INDOCRYPT.

[10]  Florian Hess,et al.  Pairing Lattices , 2008, Pairing.

[11]  Francisco Rodríguez-Henríquez,et al.  Hardware Accelerator for the Tate Pairing in Characteristic Three Based on Karatsuba-Ofman Multipliers , 2009, CHES.

[12]  Johann Großschädl,et al.  On Software Parallel Implementation of Cryptographic Pairings , 2008, IACR Cryptol. ePrint Arch..

[13]  Kris Gaj,et al.  Reconfigurable Computing Approach for Tate Pairing Cryptosystems over Binary Fields , 2009, IEEE Transactions on Computers.

[14]  Alfred Menezes,et al.  Field inversion and point halving revisited , 2004, IEEE Transactions on Computers.

[15]  Alfred Menezes,et al.  Software Implementation of Elliptic Curve Cryptography over Binary Fields , 2000, CHES.

[16]  Gerd Ascheid,et al.  Designing an ASIP for Cryptographic Pairings over Barreto-Naehrig Curves , 2009, CHES.

[17]  Tsuyoshi Takagi,et al.  Faster Implementation of eta-T Pairing over GF(3m) Using Minimum Number of Logical Instructions for GF(3)-Addition , 2008, Pairing.

[18]  Frederik Vercauteren,et al.  Optimal Pairings , 2010, IEEE Transactions on Information Theory.

[19]  Hilarie K. Orman,et al.  Fast Key Exchange with Elliptic Curve Systems , 1995, CRYPTO.

[20]  Colm O. hEigeartaigh,et al.  Pairing computation on hyperelliptic curves of genus 2 , 2006 .

[21]  Martijn Stam,et al.  On Small Characteristic Algebraic Tori in Pairing-Based Cryptography , 2004, IACR Cryptol. ePrint Arch..

[22]  Nigel P. Smart,et al.  Software Implementation of Finite Fields of Characteristic Three, for Use in Pairing-based Cryptosystems , 2002 .

[23]  Frederik Vercauteren,et al.  The Eta Pairing Revisited , 2006, IEEE Transactions on Information Theory.

[24]  Francisco Rodríguez-Henríquez,et al.  Low Complexity Cubing and Cube Root Computation over $\F_{3^m}$ in Polynomial Basis , 2010, IEEE Transactions on Computers.

[25]  Paulo S. L. M. Barreto,et al.  Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..

[26]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[27]  Victor S. Miller,et al.  The Weil Pairing, and Its Efficient Calculation , 2004, Journal of Cryptology.