The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation

[1]  Guohong Li,et al.  Withaferin A suppresses the up‐regulation of acetyl‐coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model , 2016, Molecular carcinogenesis.

[2]  P. Puigserver,et al.  A PGC1α-mediated transcriptional axis suppresses melanoma metastasis , 2016, Nature.

[3]  M. Michaelis,et al.  Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure , 2016, Journal of neurochemistry.

[4]  F. Rumjanek,et al.  Enhanced OXPHOS, glutaminolysis and β-oxidation constitute the metastatic phenotype of melanoma cells. , 2016, The Biochemical journal.

[5]  Bjorn Baselet,et al.  Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism , 2015, Cellular and Molecular Life Sciences.

[6]  Bjorn Baselet,et al.  Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway , 2015, Cellular and Molecular Life Sciences.

[7]  Peng Lee,et al.  Lipid metabolism in prostate cancer. , 2014, American journal of clinical and experimental urology.

[8]  Ajit S. Divakaruni,et al.  Assessment of Fatty Acid Beta Oxidation in Cells and Isolated Mitochondria , 2014, Current protocols in toxicology.

[9]  Y. Kloog,et al.  Metabolism addiction in pancreatic cancer , 2014, Cell Death and Disease.

[10]  Kedar S Vaidya,et al.  Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis. , 2014, Cancer research.

[11]  N. Seidah,et al.  Furin Is the Major Proprotein Convertase Required for KISS1-to-Kisspeptin Processing , 2014, PloS one.

[12]  Robert V Farese,et al.  Cellular fatty acid metabolism and cancer. , 2013, Cell metabolism.

[13]  P. Abbe,et al.  Metformin Blocks Melanoma Invasion and Metastasis Development in AMPK/p53-Dependent Manner , 2013, Molecular Cancer Therapeutics.

[14]  Pier Paolo Pandolfi,et al.  Cancer metabolism: fatty acid oxidation in the limelight , 2013, Nature Reviews Cancer.

[15]  K. Aldape,et al.  ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect , 2012, Nature Cell Biology.

[16]  Feng Zhang,et al.  Dysregulated lipid metabolism in cancer. , 2012, World journal of biological chemistry.

[17]  Claudio R. Santos,et al.  Lipid metabolism in cancer , 2012, The FEBS journal.

[18]  F. Sotgia,et al.  Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. , 2012, Antioxidants & redox signaling.

[19]  J. Joseph,et al.  Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. , 2012, Cancer research.

[20]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[21]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[22]  R. Kerbel,et al.  Mouse models of advanced spontaneous metastasis for experimental therapeutics , 2011, Nature Reviews Cancer.

[23]  W. Kaelin,et al.  Q&A: Cancer: Clues from cell metabolism , 2010, Nature.

[24]  D. Welch,et al.  The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. , 2010, European journal of cancer.

[25]  R. Wanders,et al.  A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation , 2010, Journal of Inherited Metabolic Disease.

[26]  J. Pouysségur,et al.  Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli , 2009, Journal of cellular physiology.

[27]  J. Hayashi,et al.  Reactive Oxygen Species-generating Mitochondrial DNA Mutation Up-regulates Hypoxia-inducible Factor-1α Gene Transcription via Phosphatidylinositol 3-Kinase-Akt/Protein Kinase C/Histone Deacetylase Pathway* , 2009, The Journal of Biological Chemistry.

[28]  R. Shaw,et al.  The LKB1–AMPK pathway: metabolism and growth control in tumour suppression , 2009, Nature Reviews Cancer.

[29]  Eyal Gottlieb,et al.  Metabolic transformation in cancer. , 2009, Carcinogenesis.

[30]  N. Fujii,et al.  Activation of Rho and Rho-Associated Kinase by GPR54 and KiSS1 Metastasis Suppressor Gene Product Induces Changes of Cell Morphology and Contributes to Apoptosis , 2009, Molecular Pharmacology.

[31]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[32]  N. Fujii,et al.  KiSS1 Metastasis Suppressor Gene Product Induces Suppression of Tyrosine Kinase Receptor Signaling to Akt, Tumor Necrosis Factor Family Ligand Expression, and Apoptosis , 2009, Molecular Pharmacology.

[33]  C. Thompson,et al.  Metabolic enzymes as oncogenes or tumor suppressors. , 2009, The New England journal of medicine.

[34]  G. Semenza,et al.  Regulation of cancer cell metabolism by hypoxia-inducible factor 1. , 2009, Seminars in cancer biology.

[35]  J. Hayashi,et al.  Enhanced glycolysis induced by mtDNA mutations does not regulate metastasis , 2008, FEBS letters.

[36]  J. Hayashi,et al.  ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis , 2008, Science.

[37]  F. López-Ríos,et al.  Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. , 2007, Cancer research.

[38]  B. Spiegelman,et al.  AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α , 2007, Proceedings of the National Academy of Sciences.

[39]  S. Eccles,et al.  Metastasis: recent discoveries and novel treatment strategies , 2007, The Lancet.

[40]  B. Spiegelman,et al.  A fundamental system of cellular energy homeostasis regulated by PGC-1α , 2007, Proceedings of the National Academy of Sciences.

[41]  Kedar S Vaidya,et al.  Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. , 2007, Journal of the National Cancer Institute.

[42]  Saroj P. Mathupala,et al.  Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria , 2006, Oncogene.

[43]  J. Lemasters,et al.  Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box. , 2006, Biochimica et biophysica acta.

[44]  M. Makuuchi,et al.  Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. , 2005, European journal of cancer.

[45]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[46]  K. Hunter,et al.  Modeling metastasis in vivo. , 2004, Carcinogenesis.

[47]  Ruud H. Brakenhoff,et al.  Dissecting the metastatic cascade , 2004, Nature Reviews Cancer.

[48]  S. Eaton,et al.  Mitochondrial beta-oxidation. , 2004, European journal of biochemistry.

[49]  G. Shulman,et al.  AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Kathy Pfeiffer,et al.  Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. , 2002, Carcinogenesis.

[51]  J. Hoek,et al.  Mitochondrial Binding of Hexokinase II Inhibits Bax-induced Cytochrome c Release and Apoptosis* , 2002, The Journal of Biological Chemistry.

[52]  S. Schiffmann,et al.  The Metastasis Suppressor Gene KiSS-1 Encodes Kisspeptins, the Natural Ligands of the Orphan G Protein-coupled Receptor GPR54* , 2001, The Journal of Biological Chemistry.

[53]  P. Emson,et al.  AXOR12, a Novel Human G Protein-coupled Receptor, Activated by the Peptide KiSS-1* , 2001, The Journal of Biological Chemistry.

[54]  O. Nishimura,et al.  Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor , 2001, Nature.

[55]  B. Kemp,et al.  Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. , 2001, The Biochemical journal.

[56]  L. Baert,et al.  Selective activation of the fatty acid synthesis pathway in human prostate cancer , 2000, International journal of cancer.

[57]  Chi V. Dang,et al.  c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism , 1999, Molecular and Cellular Biology.

[58]  D. Hardie,et al.  Regulation of lipid metabolism by the AMP-activated protein kinase. , 1997, Biochemical Society transactions.

[59]  L. Witters,et al.  Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. , 1997, Clinical cancer research : an official journal of the American Association for Cancer Research.

[60]  J. H. Lee,et al.  Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. , 1997, Cancer research.

[61]  J M Trent,et al.  KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. , 1996, Journal of the National Cancer Institute.

[62]  D. Hardie,et al.  Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. , 1996, The American journal of physiology.

[63]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[64]  O. Warburg,et al.  THE METABOLISM OF TUMORS IN THE BODY , 1927, The Journal of general physiology.

[65]  M. Teitell,et al.  Techniques to monitor glycolysis. , 2014, Methods in enzymology.

[66]  K. Watabe,et al.  Acetyl-CoA carboxylase-a as a novel target for cancer therapy. , 2010, Frontiers in bioscience.

[67]  Richard J. Shaw Inaugural Article: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress , 2004 .

[68]  H G Crabtree,et al.  Observations on the carbohydrate metabolism of tumours. , 1929, The Biochemical journal.

[69]  H G Crabtree,et al.  The carbohydrate metabolism of certain pathological overgrowths. , 1928, The Biochemical journal.