Dynamic error correction and regulation of downstream bubble opening by human RNA polymerase II.

[1]  Zachary F. Burton,et al.  Human RNA Polymerase II Elongation in Slow Motion: Role of the TFIIF RAP74 α1 Helix in Nucleoside Triphosphate-Driven Translocation , 2005, Molecular and Cellular Biology.

[2]  Arkady Mustaev,et al.  A Ratchet Mechanism of Transcription Elongation and Its Control , 2005, Cell.

[3]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[4]  M. Levitt,et al.  Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[6]  Chunfen Zhang,et al.  Transcription factors IIF and IIS and nucleoside triphosphate substrates as dynamic probes of the human RNA polymerase II mechanism. , 2004, Journal of molecular biology.

[7]  Y. Nedialkov,et al.  α-Amanitin Blocks Translocation by Human RNA Polymerase II* , 2004, Journal of Biological Chemistry.

[8]  J. Arnold,et al.  Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+. , 2004, Biochemistry.

[9]  J. Arnold,et al.  Poliovirus RNA-dependent RNA polymerase (3Dpol): kinetic, thermodynamic, and structural analysis of ribonucleotide selection. , 2004, Biochemistry.

[10]  C. Brooks,et al.  Recent advances in the development and application of implicit solvent models in biomolecule simulations. , 2004, Current opinion in structural biology.

[11]  D. Bushnell,et al.  Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II , 2004, Science.

[12]  R. Landick Active-Site Dynamics in RNA Polymerases , 2004, Cell.

[13]  Shigeyuki Yokoyama,et al.  Structural Basis for Substrate Selection by T7 RNA Polymerase , 2004, Cell.

[14]  J. Arnold,et al.  Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+. , 2004, Biochemistry.

[15]  Y. Nedialkov,et al.  Alpha-amanitin blocks translocation by human RNA polymerase II. , 2004, The Journal of biological chemistry.

[16]  Honggao Yan,et al.  Combinatorial Control of Human RNA Polymerase II (RNAP II) Pausing and Transcript Cleavage by Transcription Factor IIF, Hepatitis δ Antigen, and Stimulatory Factor II* , 2003, Journal of Biological Chemistry.

[17]  D. Erie,et al.  Downstream DNA Sequence Effects on Transcription Elongation , 2003, Journal of Biological Chemistry.

[18]  Hiroshi Handa,et al.  NTP-driven Translocation by Human RNA Polymerase II* , 2003, The Journal of Biological Chemistry.

[19]  Arkady Mustaev,et al.  Unified two‐metal mechanism of RNA synthesis and degradation by RNA polymerase , 2003, The EMBO journal.

[20]  H. Handa,et al.  Assay of transient state kinetics of RNA polymerase II elongation. , 2003, Methods in enzymology.

[21]  R. Sousa On models and methods for studying polymerase translocation. , 2003, Methods in enzymology.

[22]  A. Gnatt Elongation by RNA polymerase II: structure-function relationship. , 2002, Biochimica et biophysica acta.

[23]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[24]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[25]  Patrick Cramer,et al.  Structural basis of transcription: α-Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Erie,et al.  Allosteric Binding of Nucleoside Triphosphates to RNA Polymerase Regulates Transcription Elongation , 2001, Cell.

[27]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[28]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[29]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[30]  Z. Burton,et al.  Importance of codon preference for production of human RAP74 and reconstitution of the RAP30/74 complex. , 1994, Protein expression and purification.

[31]  Yong Je Chung,et al.  Structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution , 1993 .

[32]  C. F. Kostrub,et al.  Production of human RAP30 and RAP74 in bacterial cells. , 1993, Protein expression and purification.

[33]  Smita S. Patel,et al.  Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. , 1991, Biochemistry.

[34]  K. Johnson,et al.  An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. , 1991, Biochemistry.

[35]  P. Sharp,et al.  A high-efficiency HeLa cell nuclear transcription extract. , 1988, DNA.