A tutorial in connectome analysis: Topological and spatial features of brain networks

High-throughput methods for yielding the set of connections in a neural system, the connectome, are now being developed. This tutorial describes ways to analyze the topological and spatial organizations of the connectome at the macroscopic level of connectivity between brain regions as well as the microscopic level of connectivity between neurons. We will describe topological features at three different levels: the local scale of individual nodes, the regional scale of sets of nodes, and the global scale of the complete set of nodes in a network. Such features can be used to characterize components of a network and to compare different networks, e.g. the connectome of patients and control subjects for clinical studies. At the global scale, different types of networks can be distinguished and we will describe Erdös-Rényi random, scale-free, small-world, modular, and hierarchical archetypes of networks. Finally, the connectome also has a spatial organization and we describe methods for analyzing wiring lengths of neural systems. As an introduction for new researchers in the field of connectome analysis, we discuss the benefits and limitations of each analysis approach.

[1]  Keith A. Johnson,et al.  Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease , 2009, The Journal of Neuroscience.

[2]  Peter Andras,et al.  Simulation of robustness against lesions of cortical networks , 2007, The European journal of neuroscience.

[3]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[4]  A. van Ooyen,et al.  Competition in neurite outgrowth and the development of nerve connections. , 2005, Progress in brain research.

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[7]  Stefan Rotter,et al.  Extending stability through hierarchical clusters in Echo State Networks , 2022 .

[8]  F. Wörgötter,et al.  Activity-dependent structural plasticity , 2009, Brain Research Reviews.

[9]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[10]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[11]  T. Geisel,et al.  Forecast and control of epidemics in a globalized world. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Marcus Kaiser,et al.  Developmental time windows for spatial growth generate multiple-cluster small-world networks , 2007, 0802.2511.

[13]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[14]  Henry Markram,et al.  Synaptic pathways in neural microcircuits , 2005, Trends in Neurosciences.

[15]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[16]  Luciano da Fontoura Costa,et al.  Beyond the average: Detecting global singular nodes from local features in complex networks , 2006, 1003.3084.

[17]  Olaf Sporns,et al.  THE HUMAN CONNECTOME: A COMPLEX NETWORK , 2011, Schizophrenia Research.

[18]  Dmitri B Chklovskii,et al.  A cost-benefit analysis of neuronal morphology. , 2008, Journal of neurophysiology.

[19]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[20]  M. Sur,et al.  Development and plasticity of cortical areas and networks , 2001, Nature Reviews Neuroscience.

[21]  Marcus Kaiser,et al.  Modelling the development of cortical systems networks , 2004, Neurocomputing.

[22]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Marcus Kaiser Mean clustering coefficients: the role of isolated nodes and leafs on clustering measures for small-world networks , 2008, 0802.2512.

[24]  Claus C. Hilgetag,et al.  Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex , 2006, PLoS Comput. Biol..

[25]  D. V. van Essen,et al.  Challenges and Opportunities in Mining Neuroscience Data , 2011, Science.

[26]  Alan C. Evans,et al.  Structural Insights into Aberrant Topological Patterns of Large-Scale Cortical Networks in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[27]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[28]  M P Young,et al.  Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  Lester Melie-García,et al.  Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory , 2008, NeuroImage.

[30]  J Martinerie,et al.  Functional modularity of background activities in normal and epileptic brain networks. , 2008, Physical review letters.

[31]  S. Ebbesson The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity , 2004, Cell and Tissue Research.

[32]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  R. May,et al.  Infection dynamics on scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Marcus Kaiser,et al.  Brain architecture: a design for natural computation , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[37]  Christopher Cherniak,et al.  Local optimization of neuron arbors , 1992, Biological Cybernetics.

[38]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[39]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[40]  Marcus Kaiser,et al.  Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems , 2006, PLoS Comput. Biol..

[41]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Martin Suter,et al.  Small World , 2002 .

[43]  Luciano da Fontoura Costa,et al.  Communication Structure of Cortical Networks , 2011, Front. Comput. Neurosci..

[44]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[45]  Arjen van Ooyen,et al.  Competition in neurite outgrowth and the development of nerve connections , 2005 .

[46]  Marcus Kaiser,et al.  Reducing influenza spreading over the airline network , 2009, PLoS currents.

[47]  C. Stam,et al.  Small-world networks and functional connectivity in Alzheimer's disease. , 2006, Cerebral cortex.

[48]  Michael Breakspear,et al.  Dynamics of a neural system with a multiscale architecture , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Marc-Thorsten Hütt,et al.  Interplay between Topology and Dynamics in Excitation Patterns on Hierarchical Graphs , 2009, Front. Neuroinform..

[50]  P. Skudlarski,et al.  Brain Connectivity Is Not Only Lower but Different in Schizophrenia: A Combined Anatomical and Functional Approach , 2010, Biological Psychiatry.

[51]  Viktor K Jirsa,et al.  Neural field dynamics with heterogeneous connection topology. , 2007, Physical review letters.

[52]  C. J. Honeya,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009 .

[53]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[54]  Changsong Zhou,et al.  Hierarchical organization unveiled by functional connectivity in complex brain networks. , 2006, Physical review letters.

[55]  Marcus Kaiser,et al.  Clustered organization of cortical connectivity , 2007, Neuroinformatics.

[56]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  Edward T. Bullmore,et al.  Neuroinformatics Original Research Article , 2022 .

[58]  Marcus Kaiser,et al.  Development of multi-cluster cortical networks by time windows for spatial growth , 2007, Neurocomputing.

[59]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[60]  S. Gabrieli Toward discovery science of human brain function , 2010 .

[61]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Arjen Van Ooyen,et al.  Modeling neural development , 2003 .

[63]  Luciano da Fontoura Costa,et al.  Automatic Network Fingerprinting through Single-Node Motifs , 2011, PloS one.

[64]  Marcus Kaiser,et al.  Spatial growth of real-world networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Marcus Kaiser,et al.  Strategies for Network Motifs Discovery , 2009, 2009 Fifth IEEE International Conference on e-Science.

[66]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  L. Krubitzer,et al.  Nature versus nurture revisited: an old idea with a new twist , 2003, Progress in Neurobiology.

[68]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[69]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[70]  Luciano da Fontoura Costa,et al.  Signal Propagation in Cortical Networks: A Digital Signal Processing Approach , 2009, Front. Neuroinform..

[71]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[72]  Karl J. Friston,et al.  Frontiers in Neuroinformatics , 2022 .

[73]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[74]  Luciano da Fontoura Costa,et al.  Predicting the connectivity of primate cortical networks from topological and spatial node properties , 2007, BMC Systems Biology.

[75]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[76]  Béla Bollobás,et al.  Random Graphs , 1985 .

[77]  Bertrand Devaux,et al.  Diffusion tensor imaging of partial intractable epilepsy , 2005, European Radiology.

[78]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[79]  Olaf Sporns,et al.  Measuring information integration , 2003, BMC Neuroscience.

[80]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[81]  Gorka Zamora-López,et al.  Cortical Hubs Form a Module for Multisensory Integration on Top of the Hierarchy of Cortical Networks , 2009, Front. Neuroinform..

[82]  William S. Yamamoto,et al.  AY's Neuroanatomy of C. elegans for Computation , 1992 .

[83]  S. Cajal,et al.  The Structure of the Retina , 1972 .

[84]  A. van Ooyen,et al.  Random axon outgrowth and synaptic competition generate realistic connection lengths and filling fractions , 2009, BMC Neuroscience.

[85]  M P Young,et al.  Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[86]  M. V. Valkenburg Network Analysis , 1964 .

[87]  Béla Bollobás,et al.  Handbook of large-scale random networks , 2008 .

[88]  Sebastian Wernicke,et al.  FANMOD: a tool for fast network motif detection , 2006, Bioinform..

[89]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[90]  H. Spencer The structure of the nervous system. , 1870 .

[91]  C. Stam,et al.  Small-world networks and disturbed functional connectivity in schizophrenia , 2006, Schizophrenia Research.

[92]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[93]  B. Bollobás The evolution of random graphs , 1984 .

[94]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[95]  Marcus Kaiser,et al.  Criticality of spreading dynamics in hierarchical cluster networks without inhibition , 2007, 0802.2508.

[96]  Egon Wanke,et al.  Criteria for Optimizing Cortical Hierarchies with Continuous Ranges , 2010, Front. Neuroinform..

[97]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  W S Duke-Elder,et al.  THE STRUCTURE OF THE RETINA , 1926, The British journal of ophthalmology.

[99]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[100]  Roger Guimerà,et al.  Modeling the world-wide airport network , 2004 .

[101]  P. Rakic Confusing cortical columns , 2008, Proceedings of the National Academy of Sciences.

[102]  R. Kahn,et al.  Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis , 2010, The Journal of Neuroscience.

[103]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[104]  K. Gurney,et al.  Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence , 2008, PloS one.

[105]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[106]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[107]  Marcus Kaiser,et al.  Optimal Hierarchical Modular Topologies for Producing Limited Sustained Activation of Neural Networks , 2009, Front. Neuroinform..

[108]  G. Striedter Principles of brain evolution. , 2005 .

[109]  H. Sebastian Seung,et al.  Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes , 2009, Neuron.

[110]  M P Young,et al.  Analysis of the connectional organization of neural systems associated with the hippocampus in rats. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[111]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[112]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[113]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  U. Alon Biological Networks: The Tinkerer as an Engineer , 2003, Science.

[115]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[116]  M. Young,et al.  Computational analysis of functional connectivity between areas of primate cerebral cortex. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[117]  Ronald L. Rivest,et al.  Introduction to Algorithms, 3rd Edition , 2009 .

[118]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[119]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[120]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[121]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[122]  G Tononi,et al.  A complexity measure for selective matching of signals by the brain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[123]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[124]  Karl J. Friston,et al.  Value-dependent selection in the brain: Simulation in a synthetic neural model , 1994, Neuroscience.

[125]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[126]  Javier DeFelipe,et al.  From the Connectome to the Synaptome: An Epic Love Story , 2010, Science.

[127]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[128]  J. Régis,et al.  Enhanced EEG functional connectivity in mesial temporal lobe epilepsy , 2008, Epilepsy Research.

[129]  W. His,et al.  Zur Geschichte des Gehirns sowie der Centralen und peripherischen Nervenbahnen beim Menschlichen Embryo , 1888 .

[130]  Olaf Sporns,et al.  The Non-Random Brain: Efficiency, Economy, and Complex Dynamics , 2010, Front. Comput. Neurosci..

[131]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[132]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[133]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[134]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[135]  Andreas Daffertshofer,et al.  Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory , 2010, PloS one.

[136]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Gábor E. Tusnády,et al.  Reconstructing Cortical Networks: Case of Directed Graphs with High Level of Reciprocity , 2008 .

[138]  C Cherniak,et al.  Component placement optimization in the brain , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[140]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[141]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[142]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[143]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[144]  Marcus Kaiser,et al.  Newcastle University E-prints Citation for Item: Publisher's Copyright Statement: Neural Development Features: Spatio-temporal Development of the Caenorhabditis Elegans Neuronal Network , 2022 .

[145]  R. Kahn,et al.  Efficiency of Functional Brain Networks and Intellectual Performance , 2009, The Journal of Neuroscience.