After dopachrome?
暂无分享,去创建一个
Dopachrome, an intermediate in melanin biosynthesis, exhibits some unusual properties. At physiologic pH (e.g., pH 6-8) it is unstable and spontaneously loses its carboxyl group to form 5,6-dihydroxyindole (DHI) and CO2. However, over this same pH range, if various metals or a melanocyte-specific enzyme are present, it rapidly rearranges to its isomer form--5,6-dihydroxyindole-2-carboxylic acid (DHICA)--which is far more stable than dopachrome in its ability to retain the carboxyl group. Whether or not the carboxyl group is retained could have important implications for the regulation of melanogenesis, since in the presence of oxygen DHI spontaneously forms a black precipitate, whereas DHICA forms a golden-brown solution. The solubility of "DHICA-melanin" is due to the presence of carboxyl groups, which provide negative charges and hydrophilicity. Thus, in vivo, the extent to which dopachrome is converted to DHI or DHICA may well influence the solubility and color of the melanin formed. The purpose of this article is to review recent findings in these areas and to discuss the possible significance of dopachrome conversion in the regulation of melanogenesis and color formation.