Jet Diffusion versus JetGPT -- Modern Networks for the LHC

We introduce two diffusion models and an autoregressive transformer for LHC physics simulations. Bayesian versions allow us to control the networks and capture training uncertainties. After illustrating their different density estimation methods for simple toy models, we discuss their advantages for Z plus jets event generation. While diffusion networks excel through their precision, the transformer scales best with the phase space dimensionality. Given the different training and evaluation speed, we expect LHC physics to benefit from dedicated use cases for normalizing flows, diffusion models, and autoregressive transformers.

[1]  F. Bishara,et al.  Machine learning amplitudes for faster event generation , 2019, Physical Review D.

[2]  P. Baldi,et al.  Geometry-aware Autoregressive Models for Calorimeter Shower Simulations , 2022, ArXiv.

[3]  Anthony L. Caterini,et al.  CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds , 2022, ArXiv.

[4]  B. Nachman,et al.  Score-based Generative Models for Calorimeter Shower Simulation , 2022, Physical Review D.

[5]  G. Kasieczka,et al.  Calomplification — the power of generative calorimeter models , 2022, Journal of Instrumentation.

[6]  T. Plehn,et al.  Understanding Event-Generation Networks via Uncertainties , 2021, SciPost Physics.

[7]  P. Baldi,et al.  How to GAN Higher Jet Resolution , 2020, SciPost Physics.

[8]  A. Butter,et al.  Generative Networks for LHC Events , 2020, Artificial Intelligence for High Energy Physics.

[9]  D. Maître,et al.  A factorisation-aware matrix element emulator , 2021, Journal of High Energy Physics.

[10]  Diederik P. Kingma,et al.  Variational Diffusion Models , 2021, ArXiv.

[11]  D. Shih,et al.  CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows , 2021, Physical Review D.

[12]  Thong Q. Nguyen,et al.  Analysis-Specific Fast Simulation at the LHC with Deep Learning , 2021, Computing and Software for Big Science.

[13]  Rob Verheyen,et al.  Phase space sampling and inference from weighted events with autoregressive flows , 2020, SciPost Physics.

[14]  G. Kasieczka,et al.  Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed , 2020, Computing and Software for Big Science.

[15]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  L. Santi,et al.  Towards a computer vision particle flow , 2020, The European Physical Journal C.

[17]  Damian Podareanu,et al.  Event generation and statistical sampling for physics with deep generative models and a density information buffer , 2019, Nature Communications.

[18]  Stefan T. Radev,et al.  Measuring QCD Splittings with Invertible Networks , 2020, SciPost Physics.

[19]  A. Butter,et al.  How to GAN Event Unweighting , 2020, 2012.07873.

[20]  Matthew D. Klimek,et al.  Improved neural network Monte Carlo simulation , 2020, 2009.07819.

[21]  G. Kasieczka,et al.  DCTRGAN: improving the precision of generative models with reweighting , 2020, Journal of Instrumentation.

[22]  G. Kasieczka,et al.  GANplifying event samples , 2020, SciPost Physics.

[23]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[24]  Ullrich Kothe,et al.  Invertible networks or partons to detector and back again , 2020, 2006.06685.

[25]  G. Kasieczka,et al.  Per-object systematics using deep-learned calibration , 2020, SciPost Physics.

[26]  S. Badger,et al.  Using neural networks for efficient evaluation of high multiplicity scattering amplitudes , 2020, Journal of High Energy Physics.

[27]  H. Schulz,et al.  Event generation with normalizing flows , 2020, Physical Review D.

[28]  S. Schumann,et al.  Exploring phase space with Neural Importance Sampling , 2020, SciPost Physics.

[29]  Christina Gao,et al.  i- flow: High-dimensional integration and sampling with normalizing flows , 2020, Mach. Learn. Sci. Technol..

[30]  Wei Wei,et al.  Calorimetry with deep learning: particle simulation and reconstruction for collider physics , 2019, The European Physical Journal C.

[31]  G. Kasieczka,et al.  How to GAN away Detector Effects , 2019, SciPost Physics.

[32]  Patrick T. Komiske,et al.  OmniFold: A Method to Simultaneously Unfold All Observables. , 2019, Physical review letters.

[33]  Jennifer Thompson,et al.  Deep-learning jets with uncertainties and more , 2019, SciPost Physics.

[34]  Tilman Plehn,et al.  How to GAN LHC events , 2019, SciPost Physics.

[35]  Sana Ketabchi Haghighat,et al.  DijetGAN: a Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC , 2019, Journal of High Energy Physics.

[36]  Enrico Bothmann,et al.  Reweighting a parton shower using a neural network: the final-state case , 2018, Journal of High Energy Physics.

[37]  Martin Erdmann,et al.  Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network , 2018, Computing and Software for Big Science.

[38]  C. Frye,et al.  JUNIPR: a framework for unsupervised machine learning in particle physics , 2018, The European Physical Journal C.

[39]  Kyunghyun Cho,et al.  QCD-aware recursive neural networks for jet physics , 2017, Journal of High Energy Physics.

[40]  Matthew D. Klimek,et al.  Neural network-based approach to phase space integration , 2018, SciPost Physics.

[41]  Francesco Pandolfi,et al.  Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks , 2018, Computing and Software for Big Science.

[42]  Martin Erdmann,et al.  Generating and Refining Particle Detector Simulations Using the Wasserstein Distance in Adversarial Networks , 2018, Computing and Software for Big Science.

[43]  Benjamin Nachman,et al.  Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters. , 2017, Physical review letters.

[44]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[45]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[46]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[47]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[48]  Yarin Gal,et al.  Uncertainty in Deep Learning , 2016 .

[49]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[50]  Surya Ganguli,et al.  Deep Unsupervised Learning using Nonequilibrium Thermodynamics , 2015, ICML.

[51]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[52]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[53]  F. Krauss,et al.  QCD Matrix Elements + Parton Showers , 2001, hep-ph/0109231.

[54]  Radford M. Neal Bayesian learning for neural networks , 1995 .

[55]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .