Reference-based read clustering improves the de novo genome assembly of microbial strains

[1]  S. Zhong,et al.  Genome sequence resources for the maize pathogen Fusarium temperatum isolated in Poland. , 2020, Molecular Plant-Microbe Interactions.

[2]  Amal E. Ali,et al.  Complete genome sequence and comparative analysis of two potential probiotics Bacillus subtilis isolated from honey and honeybee microbiomes , 2020, Journal of Genetic Engineering and Biotechnology.

[3]  H. Iwahashi,et al.  Draft Genome Sequence of Lactobacillus plantarum IYO1511, Isolated from Ishizuchi-Kurocha , 2020, Microbiology Resource Announcements.

[4]  R. Jáuregui,et al.  Whole-Genome Sequencing of Clostridium sp. Strain FP2, Isolated from Spoiled Venison , 2020, Microbiology Resource Announcements.

[5]  K. Ulaganathan,et al.  Whole genome sequencing and identification of host-interactive genes in the rice endophytic Leifsonia sp. ku-ls , 2019, Functional & Integrative Genomics.

[6]  L. Cerdeira,et al.  Genomic characterization of a multidrug-resistant TEM-52b extended-spectrum β-lactamase-positive Escherichia coli ST219 isolated from a cat in France. , 2019, Journal of global antimicrobial resistance.

[7]  Zhengyang Wang,et al.  SolidBin: improving metagenome binning with semi-supervised normalized cut , 2019, Bioinform..

[8]  Alexandre Souvorov,et al.  SKESA: strategic k-mer extension for scrupulous assemblies , 2018, Genome Biology.

[9]  K. Satou,et al.  Draft Genome Sequence of Saccharomyces cerevisiae Strain Hm-1, Isolated from Cotton Rosemallow , 2018, Microbiology Resource Announcements.

[10]  Changhui Yan,et al.  Genome sequence and analysis of Mycobacterium tuberculosis strain SWLPK. , 2018, Journal of global antimicrobial resistance.

[11]  L. Peixe,et al.  Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase , 2018, The Journal of antimicrobial chemotherapy.

[12]  Saman K. Halgamuge,et al.  CoMet: a workflow using contig coverage and composition for binning a metagenomic sample with high precision , 2017, BMC Bioinformatics.

[13]  Kentaro K. Shimizu,et al.  Reference-guided de novo assembly approach improves genome reconstruction for related species , 2017, BMC Bioinformatics.

[14]  Rolf Backofen,et al.  RNAscClust: clustering RNA sequences using structure conservation and graph based motifs , 2017, Bioinform..

[15]  Francesca Giordano,et al.  Oxford Nanopore MinION Sequencing and Genome Assembly , 2016, Genom. Proteom. Bioinform..

[16]  Julian Parkhill,et al.  Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data , 2016, bioRxiv.

[17]  P. Sharp,et al.  Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae , 2016, Molecular plant pathology.

[18]  David Haussler,et al.  Long-read sequence assembly of the gorilla genome , 2016, Science.

[19]  Anas A. Al-okaily,et al.  HGA: denovo genome assembly method for bacterial genomes using high coverage short sequencing reads , 2016, BMC Genomics.

[20]  Blake A. Simmons,et al.  MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets , 2016, Bioinform..

[21]  Kin-Fan Au,et al.  PacBio Sequencing and Its Applications , 2015, Genom. Proteom. Bioinform..

[22]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[23]  S. O’Brien,et al.  The Genome 10K Project: a way forward. , 2015, Annual review of animal biosciences.

[24]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[25]  S. Tringe,et al.  MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm , 2014, Microbiome.

[26]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[27]  Johannes Söding,et al.  kClust: fast and sensitive clustering of large protein sequence databases , 2013, BMC Bioinformatics.

[28]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[29]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[30]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[31]  Leping Li,et al.  ART: a next-generation sequencing read simulator , 2012, Bioinform..

[32]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[33]  A. Tretyn,et al.  Sequencing technologies and genome sequencing , 2011, Journal of Applied Genetics.

[34]  Stefan R. Henz,et al.  Reference-guided assembly of four diverse Arabidopsis thaliana genomes , 2011, Proceedings of the National Academy of Sciences.

[35]  Yutaka Saito,et al.  Fast and accurate clustering of noncoding RNAs using ensembles of sequence alignments and secondary structures , 2011, BMC Bioinformatics.

[36]  Anne M. Denton,et al.  Generalised Sequence Signatures through symbolic clustering , 2010, Int. J. Data Min. Bioinform..

[37]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[38]  John E. Karro,et al.  PEACE: Parallel Environment for Assembly and Clustering of Gene Expression , 2010, Nucleic Acids Res..

[39]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[40]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[41]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[42]  Tamás Nepusz,et al.  SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale , 2010, BMC Bioinformatics.

[43]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[44]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[45]  Robert S. Harris Improved Pairwise Alignmnet of Genomic DNA , 2007 .

[46]  Jan Gorodkin,et al.  Multiple structural alignment and clustering of RNA sequences , 2007, Bioinform..

[47]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[48]  Bernard B. Suh,et al.  Reconstructing contiguous regions of an ancestral genome. , 2006, Genome research.

[49]  Lei Shen,et al.  Combining phylogenetic motif discovery and motif clustering to predict co-regulated genes , 2005, Bioinform..

[50]  F. Collins,et al.  The Human Genome Project: Lessons from Large-Scale Biology , 2003, Science.

[51]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[52]  M. Suyama,et al.  Evolution of prokaryotic gene order: genome rearrangements in closely related species. , 2001, Trends in genetics : TIG.

[53]  L. Dijkshoorn,et al.  Strain, clone and species: comments on three basic concepts of bacteriology. , 2000, Journal of medical microbiology.

[54]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[55]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.