A novel definition for quantification of mode shape complexity

Abstract Complex mode shapes are quite often encountered in structural dynamics. However, there is no universally accepted parameter for the quantification of mode shape complexity. After reviewing the existing methods, a novel approach is proposed in this paper in order to quantify mode shape complexity for general structures. The new parameter proposed in this paper is based on conservation of energy principle when a structure is vibrating at a specific mode during a period of vibration. The levels of complexity of the individual mode shapes of a sample structure are then quantified using the proposed new parameter and the other parameters available in the literature. The corresponding results are compared, the validity and the generality of the new parameter are demonstrated for various damping scenarios.

[1]  Ming-Shaung Ju,et al.  Estimation of Mass, Stiffness and Damping Matrices from Frequency Response Functions , 1996 .

[2]  Daniel J. Inman,et al.  Frequency Response of Nonproportionally Damped, Lumped Parameter, Linear Dynamic Systems , 1990 .

[3]  Atul Bhaskar,et al.  Mode Shapes during Asynchronous Motion and Non-Proportionality Indices , 1999 .

[4]  Mark Richardson,et al.  Mass, Stiffness, and Damping Matrix Estimates from Structural Measurements , 1987 .

[5]  Seamus D. Garvey,et al.  THE RELATIONSHIP BETWEEN THE REAL AND IMAGINARY PARTS OF COMPLEX MODES , 1998 .

[6]  M. Morzfeld,et al.  Diagonal dominance of damping and the decoupling approximation in linear vibratory systems , 2009 .

[7]  Atul Bhaskar,et al.  Estimates of errors in the frequency response of non-classically damped systems , 1995 .

[8]  Rajendra Singh,et al.  Quantification of the extent of non-proportional viscous damping in discrete vibratory systems , 1986 .

[9]  Richard S. Pappa,et al.  A consistent-mode indicator for the eigensystem realization algorithm , 1992 .

[10]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[11]  C. Hoen,et al.  An Engineering Interpretation of the Complex Eigensolution of Linear Dynamic Systems , 2005 .

[12]  Sondipon Adhikari,et al.  Optimal complex modes and an index of damping non-proportionality , 2004 .

[13]  Ron Potter,et al.  MASS, STIFFNESS, AND DAMPING MATRICES FROM MEASURED MODAL PARAMETERS , 1974 .

[14]  J. S. Kim,et al.  Characteristics of Modal Coupling in Nonclassically Damped Systems Under Harmonic Excitation , 1994 .

[15]  Goizalde Ajuria,et al.  Proportional damping approximation for structures with added viscoelastic dampers , 2006 .

[16]  Uwe Prells,et al.  A MEASURE OF NON-PROPORTIONAL DAMPING , 2000 .

[17]  Jim Woodhouse,et al.  LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION , 1998 .

[18]  Dhanesh Madhukar Purekar A STUDY OF MODAL TESTING MEASUREMENT ERRORS, SENSOR PLACEMENT AND MODAL COMPLEXITY ON THE PROCESS OF FINITE ELEMENT CORRELATION , 2005 .

[19]  S. Sivasundaram Advances in Dynamics and Control , 2004 .

[20]  S. R. Ibrahim Existence and Normalization of Complex Modes for Post Experimental Use in Modal Analysis , 1999 .

[21]  Mark H. Richardson Detection and Location of Structural Cracks using FRF Measurements , 1990 .

[22]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[23]  Gregory W. Reich,et al.  Structural system identification: from reality to models , 2003 .

[24]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[25]  Pelin Gundes Bakir Automation of the stabilization diagrams for subspace based system identification , 2011, Expert Syst. Appl..

[26]  D. J. Ewins,et al.  Complex Modes - Origins and Limits , 1995 .

[27]  Randall J. Allemang,et al.  Application of Modal Scaling to the Pole Selection Phase of Parameter Estimation , 2011 .

[28]  Wanping Zheng,et al.  Evaluation of damping non-proportionality using identified modal information , 2001 .

[29]  Daniel J. Inman,et al.  A TUTORIAL ON COMPLEX EIGENVALUES , 2002 .

[30]  Wanping Zheng,et al.  Quantification of non-proportionality of damping in discrete vibratory systems , 2000 .

[31]  George C. Lee,et al.  An Index of Damping Non-Proportionality for Discrete Vibrating Systems , 1994 .

[32]  A. Sestieri,et al.  Analysis Of Errors And Approximations In The Use Of Modal Co-Ordinates , 1994 .

[33]  Ulrich Fuellekrug,et al.  Computation of real normal modes from complex eigenvectors , 2008 .

[34]  D. Inman,et al.  Identification of a Nonproportional Damping Matrix from Incomplete Modal Information , 1991 .

[35]  José Roberto de França Arruda,et al.  ON THE RELATION BETWEEN COMPLEX MODES AND WAVE PROPAGATION PHENOMENA , 2002 .

[36]  Paul Sas,et al.  Modal Analysis Theory and Testing , 2005 .