Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications

This review summarizes the current status of Cu(In,Ga)(S,Se)2 (CIGS) thin film solar cell technology with a focus on recent advancements and emerging concepts intended for higher efficiency and novel applications. The recent developments and trends of research in laboratories and industrial achievements communicated within the last years are reviewed, and the major developments linked to alkali post deposition treatment and composition grading in CIGS, surface passivation, buffer, and transparent contact layers are emphasized. Encouraging results have been achieved for CIGS‐based tandem solar cells and for improvement in low light device performance. Challenges of technology transfer of lab's record high efficiency cells to average industrial production are obvious from the reported efficiency values. One section is dedicated to development and opportunities offered by flexible and lightweight CIGS modules. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  D. Scheiman,et al.  CIGS2 thin‐film solar cells on flexible foils for space power , 2002 .

[2]  G. Makrides,et al.  Potential of photovoltaic systems in countries with high solar irradiation , 2010 .

[3]  T. Nakada,et al.  Post-treatment effects on ZnS(O,OH)/Cu(In,Ga)Se2 solar cells deposited using thioacetamide-ammonia based solution , 2014 .

[4]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[5]  Takayuki Watanabe,et al.  Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization , 1997 .

[6]  T. Nakada,et al.  Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor , 2001 .

[7]  C. Guillén,et al.  Stability of sputtered ITO thin films to the damp-heat test , 2006 .

[8]  R. Noufi,et al.  Damp-heat induced degradation of transparent conducting oxides for thin-film solar cells , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[9]  T. Nakada,et al.  A comparative study of Cd‐ and Zn‐compound buffer layers on Cu(In1−x,Gax)(Sy,Se1−y)2 thin film solar cells , 2016 .

[10]  Kyung-Eun Park,et al.  Failure analysis of Cu(In,Ga)Se2 photovoltaic modules: degradation mechanism of Cu(In,Ga)Se2 solar cells under harsh environmental conditions , 2015 .

[11]  M. Edoff,et al.  Growth and characterization of ZnO-based buffer layers for CIGS solar cells , 2010, OPTO.

[12]  Markus Rüggeberg,et al.  Bio-Inspired Wooden Actuators for Large Scale Applications , 2015, PloS one.

[13]  Hans-Werner Schock,et al.  Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices , 2011 .

[14]  M. Igalson,et al.  The change of the electronic properties of CIGS devices induced by the ‘damp heat’ treatment , 2002 .

[15]  Katsumi Kushiya,et al.  CIS-based thin-film PV technology in solar frontier K.K. , 2014 .

[16]  S. Nishiwaki,et al.  Effects of NaF evaporation during low temperature Cu(In,Ga)Se2 growth , 2015 .

[17]  Jinwoo Lee,et al.  Bandgap gradients in (Ag,Cu)(In,Ga)Se2 thin film solar cells deposited by three-stage co-evaporation , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[18]  T. Woike,et al.  Solar cell array system trades - Present and future , 1999 .

[19]  S. Nishiwaki,et al.  New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se2 solar cells for faster reaction kinetics , 2016 .

[20]  T. Walter,et al.  Above 16% efficient sequentially grown Cu(In,Ga)(Se,S)2‐based solar cells with atomic layer deposited Zn(O,S) buffers , 2015 .

[21]  K. Emery,et al.  Cu(In,Ga)Se2 solar cells measured under low flux optical concentration , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[22]  Tayfun Gokmen,et al.  Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell , 2013 .

[23]  T. Nakada,et al.  Effects of combined heat and light soaking on device performance of Cu(In,Ga)Se2 solar cells with ZnS(O,OH) buffer layer , 2014 .

[24]  Alessandro Virtuani,et al.  Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells , 2006 .

[25]  Marika Edoff,et al.  Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se $_{\bf 2}$ Solar Cells , 2014, IEEE Journal of Photovoltaics.

[26]  Jonathan Joel,et al.  On the assessment of CIGS surface passivation by photoluminescence , 2015 .

[27]  D. Hariskos,et al.  Improved Photocurrent in Cu(In,Ga)Se2 Solar Cells: From 20.8% to 21.7% Efficiency with CdS Buffer and 21.0% Cd-Free , 2015, IEEE Journal of Photovoltaics.

[28]  D. Hariskos,et al.  New reaction kinetics for a high‐rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2‐based solar cells , 2012 .

[29]  Denis Flandre,et al.  Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells , 2015 .

[30]  F. J. Pern,et al.  Stability of TCO window layers for thin-film CIGS solar cells upon damp heat exposures: part II , 2009, Optics + Photonics for Sustainable Energy.

[31]  H. Schock,et al.  Increased homogeneity and open-circuit voltage of Cu(In,Ga)Se2 solar cells due to higher deposition temperature , 2011 .

[32]  Alessandro Virtuani,et al.  Highly resistive Cu(In, Ga)Se2 absorbers for improved low-irradiance performance of thin-film solar cells , 2004 .

[33]  Sheyu Guo,et al.  Transparent Conducting Oxides for Photovoltaics , 2011 .

[34]  L. Stolt,et al.  The effect of Ga-grading in CIGS thin film solar cells , 2005 .

[35]  Shigeru Niki,et al.  Monolithically integrated flexible Cu(In,Ga)Se2 solar cells and submodules using newly developed structure metal foil substrate with a dielectric layer , 2013 .

[36]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[37]  Michael Grätzel,et al.  Fabrication and performance of a monolithic dye-sensitized TiO2/Cu(In,Ga)Se2 thin film tandem solar cell , 2009 .

[38]  On the combined effects of window/buffer and buffer/absorber conduction-band offsets, buffer thickness and doping on thin-film solar cell performance , 2014 .

[39]  S. Bent,et al.  Reducing interface recombination for Cu(In,Ga)Se2 by atomic layer deposited buffer layers , 2015 .

[40]  Charlie Wood,et al.  Examination of lifetime-limiting failure mechanisms in CIGSS-based PV minimodules under environmental stress , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[41]  K. C. Reinhardt,et al.  Developments in thin-film photovoltaics for space , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[42]  S. Nishiwaki,et al.  Preparation of Cu(In,Ga)Se_2 thin films at low substrate temperatures , 2001 .

[43]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[44]  Uwe Rau,et al.  A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors , 2001 .

[45]  H. Fujiwara,et al.  Hydrogen-doped In2O3 as High-mobility Transparent Conductive Oxide , 2007 .

[46]  S. Siebentritt,et al.  Highly conductive ZnO films with high near infrared transparency , 2015 .

[47]  Karsten Otte,et al.  Flexible Cu(In,Ga)Se2 thin-film solar cells for space application , 2006 .

[48]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[49]  J. Y. Kim,et al.  Monolithic DSSC/CIGS tandem solar cell fabricated by a solution process , 2015, Scientific Reports.

[50]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[51]  R. Menozzi,et al.  Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency. , 2015, Nano letters.

[52]  Daniel Lincot,et al.  Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments , 2010 .

[53]  D. Hariskos,et al.  Large-area CIGS modules: processes and properties , 2003 .

[54]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[55]  R. Klenk Characterisation and modelling of chalcopyrite solar cells , 2001 .

[56]  D. Ruthe,et al.  Change of electrical properties of CIGS thin-film solar cells after structuring with ultrashort laser pulses , 2011, LASE.

[57]  R. Reedy,et al.  Enhanced Performance in Cu(In,Ga)Se$_{\bf 2}$ Solar Cells Fabricated by the Two-Step Selenization Process With a Potassium Fluoride Postdeposition Treatment , 2014, IEEE Journal of Photovoltaics.

[58]  A. Zunger,et al.  Effects of Na on the electrical and structural properties of CuInSe2 , 1999 .

[59]  Hans Zogg,et al.  Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils , 2005 .

[60]  D. Hariskos,et al.  Substitution of the CdS buffer layer in CIGS thin‐film solar cells , 2014 .

[61]  L. Parissi,et al.  Statistical Process Control for Cu(In,Ga)(S,Se)2 electrodeposition-based manufacturing process of 60×120cm2 modules up to 14,0% efficiency , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[62]  Prageeth Jayathissa,et al.  The Adaptive Solar Facade: From concept to prototypes , 2016 .

[63]  E. Wallin,et al.  CIGS module manufacturing with high deposition rates and efficiencies , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[64]  M. Burgelman,et al.  Analytical versus numerical analysis of back grading in CIGS solar cells , 2011 .

[65]  Marko Topič,et al.  A detailed study of monolithic contacts and electrical losses in a large‐area thin‐film module , 2005 .

[66]  M. Buffiere,et al.  Minimizing metastabilities in Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells , 2015 .

[67]  D. Hariskos,et al.  Buffer layers in Cu(In,Ga)Se2 solar cells and modules , 2005 .

[68]  Manufacturing ramp-up of flexible CIGS PV , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[69]  U. Zimmermann,et al.  Inline Cu(In,Ga)Se$_{2}$ Co-evaporation for High-Efficiency Solar Cells and Modules , 2013, IEEE Journal of Photovoltaics.

[70]  J. Werner,et al.  Resistive limitations to spatially inhomogeneous electronic losses in solar cells , 2004 .

[71]  T. Schedel-Niedrig,et al.  Three-dimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface , 2009 .

[72]  M. Döbeli,et al.  Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells , 2015 .

[73]  S. Paetel,et al.  Application of indium zinc oxide window layers in Cu(In,Ga)Se2 solar cells , 2017 .

[74]  H. Schock,et al.  Sudden stress relaxation in compound semiconductor thin films triggered by secondary phase segregation , 2015 .

[75]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[76]  Lars Stolt,et al.  Cu(In,Ga)Se2-based thin-film photovoltaic modules optimized for long-term performance , 2003 .

[77]  Florian Ruske,et al.  Damp heat stable doped zinc oxide films , 2014 .

[78]  S. Ishizuka,et al.  Effects of Mo surface oxidation on Cu(In,Ga)Se2 solar cells fabricated by three-stage process with KF postdeposition treatment , 2016 .

[79]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[80]  Defne Apul,et al.  Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis , 2015 .

[81]  S. Nishiwaki,et al.  Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[82]  D. Lincot,et al.  Impact of oxygen concentration during the deposition of window layers on lowering the metastability effects in Cu(In,Ga)Se2/CBD Zn(S,O) based solar cell , 2015 .

[83]  Yoshiyuki Chiba,et al.  Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[84]  Denis Flandre,et al.  Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface , 2015 .

[85]  R. Klenk,et al.  Junction formation in chalcopyrite solar cells by sputtered wide gap compound semiconductors , 2011 .

[86]  T. Nakada,et al.  Impacts of surface sulfurization on Cu(In1−x,Gax)Se2 thin‐film solar cells , 2015 .

[87]  A. Tiwari,et al.  All Solution‐Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device , 2015 .

[88]  S. Nishiwaki,et al.  Cu(In,Ga)Se$_{\bf 2}$ Thin-Film Solar Cells and Modules—A Boost in Efficiency Due to Potassium , 2015, IEEE Journal of Photovoltaics.

[89]  U. Zimmermann,et al.  A comparison between thin film solar cells made from co‐evaporated CuIn1‐xGaxSe2 using a one‐stage process versus a three‐stage process , 2015 .

[90]  Andreas Bauer,et al.  CIGS Cells and Modules With High Efficiency on Glass and Flexible Substrates , 2014, IEEE Journal of Photovoltaics.

[91]  Mirjam Theelen,et al.  Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells , 2014 .

[92]  L. Kranz,et al.  Flexible Cu(In,Ga)Se2 solar cells with reduced absorber thickness , 2015 .

[93]  Christiana Honsberg,et al.  Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method , 2008 .

[94]  J. Sites,et al.  Band-gap grading in Cu(In,Ga)Se2 solar cells , 2005 .

[95]  James Edward Pickett,et al.  Life prediction for CIGS solar modules part 2: degradation kinetics, accelerated testing, and encapsulant effects , 2013 .

[96]  R. Menozzi,et al.  Designing CIGS solar cells with front-side point contacts , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[97]  D. Hariskos,et al.  Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% , 2014 .

[98]  D. Tarrant,et al.  Stress induced degradation modes in CIGS mini-modules , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[99]  R. Noufi,et al.  High-Efficiency CdTe Polycrystalline Thin-Film Solar Cells with an Ultra-Thin Cu x Te Transparent Back-Contact , 2005 .

[100]  T. Walter,et al.  Impact of sulfur and gallium gradients on the performance of thin film Cu(In,Ga)(Se,S)2 solar cells , 2015 .

[101]  Frank W. Fecher,et al.  Influence of a shunt on the electrical behavior in thin film photovoltaic modules – A 2D finite element simulation study , 2014 .

[102]  M. Al‐Jassim,et al.  Phases, morphology, and diffusion in CuInxGa1−xSe2 thin films , 1997 .

[103]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[104]  D. Lincot,et al.  Thermodynamic and experimental study of chemical bath deposition of Zn(S,O,OH) buffer layers in basic aqueous ammonia solutions. Cell results with electrodeposited CuIn(S,Se)2 absorbers , 2007 .

[105]  R. Bhattacharya CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers , 2013 .

[106]  M. Lux‐Steiner,et al.  Indium sulfide buffer/CIGSSe interface engineering: Improved cell performance by the addition of zinc sulfide , 2007 .

[107]  Valerio Romano,et al.  A monolithically integrated high‐efficiency Cu(In,Ga)Se2 mini‐module structured solely by laser , 2015 .

[108]  F. Kessler,et al.  Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation , 2016 .

[109]  A. Polity,et al.  Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering , 2004 .

[110]  N. J. Stevens Solar array experiments on the SPHINX satellite , 1973 .

[111]  Lars Stolt,et al.  World‐record Cu(In,Ga)Se2‐based thin‐film sub‐module with 17.4% efficiency , 2012 .

[112]  Steven S. Hegedus,et al.  Encapsulation of Cu(InGa)Se2 solar cell with Al2O3 thin-film moisture barrier grown by atomic layer deposition , 2010 .

[113]  D. Lincot,et al.  Toward a Better Understanding of the Use of Additives in Zn(S,O) Deposition Bath for High-Efficiency Cu(In,Ga)Se2-Based Solar Cells , 2015, IEEE Journal of Photovoltaics.

[114]  U. Zimmermann,et al.  Influence of Varying Cu Content on Growth and Performance of Ga-Graded Cu(In,Ga)Se2 Solar Cells , 2015, IEEE Journal of Photovoltaics.

[115]  D. Lincot,et al.  Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell , 2015, Scientific Reports.

[116]  Hans Zogg,et al.  Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation , 2004 .

[117]  M. Powalla,et al.  Efficiency enhancement of Cu(In,Ga)Se2 thin‐film solar cells by a post‐deposition treatment with potassium fluoride , 2013 .

[118]  Stephan Buecheler,et al.  Technological status of Cu(In,Ga)(Se,S)2-based photovoltaics , 2013 .

[119]  S. Kijima,et al.  Achievement of 17.5% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[120]  Daniel Lincot,et al.  Resistive and thermal scale effects for Cu(In, Ga)Se2 polycrystalline thin film microcells under concentration , 2011 .

[121]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[122]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[123]  Jonas Hedström,et al.  ZnO/CdS/Cu(In,Ga)Se/sub 2/ thin film solar cells with improved performance , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[124]  J. Nam,et al.  Achievement of 17.9% efficiency in 30 × 30 cm2 Cu(In,Ga)(Se,S)2 solar cell sub‐module by sulfurization after selenization with Cd‐free buffer , 2016 .

[125]  Alessandro Virtuani,et al.  Performance of Cu(In,Ga)Se2 solar cells under low irradiance , 2003 .

[126]  M. Döbeli,et al.  Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se2 solar cells , 2015 .

[127]  L. Kranz,et al.  Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells , 2012 .

[128]  H. Zogg,et al.  Sodium incorporation strategies for CIGS growth at different temperatures , 2005 .

[129]  H. Schock,et al.  Model for electronic transport in Cu(In,Ga)Se2 solar cells , 1998 .

[130]  Rommel Noufi,et al.  HIGH-EFFICIENCY CUINXGA1-XSE2 SOLAR CELLS MADE FROM (INX,GA1-X)2SE3 PRECURSOR FILMS , 1994 .

[131]  T. Nakada,et al.  Temperature dependent current–voltage and admittance spectroscopy on heat-light soaking effects of Cu(In,Ga)Se2 solar cells with ALD-Zn(O,S) and CBD-ZnS(O,OH) buffer layers , 2015 .

[132]  M. Liero,et al.  Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook , 2016 .

[133]  D. Güttler,et al.  Modification of the three-stage evaporation process for CuIn1−xGaxSe2 absorber deposition , 2011 .

[134]  G. H. Bauer,et al.  Gallium gradients in Cu(In,Ga)Se2 thin‐film solar cells , 2015 .

[135]  M. Lux‐Steiner,et al.  ZnS Nanodot Film as Defect Passivation Layer for Cu(In,Ga)(S,Se)2 Thin‐Film Solar Cells Deposited by Spray‐ILGAR (Ion‐Layer Gas Reaction) , 2011 .

[136]  R. Klenk,et al.  Junction formation by Zn(O,S) sputtering yields CIGSe‐based cells with efficiencies exceeding 18% , 2014 .

[137]  T. Nakada,et al.  High-Temperature Degradation Mechanism of Cu(In,Ga)Se2-Based Thin Film Solar Cells , 2008 .

[138]  M. Lux‐Steiner,et al.  Spray-ILGAR ZnS nanodots/In2S3 as defect passivation/point contact bilayer buffer for Cu(In,Ga)(S,Se)2 solar cells , 2013 .

[139]  Pierre Lorenz,et al.  The influence of the laser parameter on the electrical shunt resistance of scribed Cu(InGa)Se2 solar cells by nested circular laser scribing technique , 2014 .

[140]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[141]  Lars Stolt,et al.  Cu(InGa)Se2 Solar Cells , 2005 .

[142]  P. Salomé,et al.  Incorporation of alkali metals in chalcogenide solar cells , 2015 .

[143]  M. Contreras,et al.  Graded band-gap Cu(In,Ga)Se2 thin-film solar cell absorber with enhanced open-circuit voltage , 1993 .

[144]  M. Green,et al.  22.8% efficient silicon solar cell , 1989 .

[145]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .

[146]  M. Pinarbasi,et al.  Recent advances in electroplating based CIGS solar cell fabrication , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[147]  Reiner Klenk,et al.  Damp heat stability of Al-doped zinc oxide films on smooth and rough substrates , 2011 .

[148]  H. Sugimoto,et al.  New World-Record Efficiency for Pure-Sulfide Cu(In,Ga)S2 Thin-Film Solar Cell With Cd-Free Buffer Layer via KCN-Free Process , 2016, IEEE Journal of Photovoltaics.

[149]  S. Niki,et al.  Comparison of ZnO:B and ZnO:Al layers for Cu(In,Ga)Se2 submodules , 2016 .

[150]  Marika Edoff,et al.  Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys. , 2006, Physical review letters.

[151]  D. Lincot,et al.  The Zn(S,O,OH)/ZnMgO buffer in thin‐film Cu(In,Ga)(Se,S)2‐based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in‐line co‐evaporated Cu(In,Ga)Se2 solar cells , 2009 .

[152]  Chih-Wen Liu,et al.  Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3 , 2012 .