Probing the interaction of the amino acid alanine with the surface of ZnO(1010).

[1]  J. Rodríguez,et al.  The adsorption and reactions of the amino acid proline on rutile TiO2(1 1 0) surfaces , 2008 .

[2]  J. Rodríguez,et al.  Proline Adsorption on TiO2(1 1 0) Single Crystal Surface: A Study by High Resolution Photoelectron Spectroscopy , 2007 .

[3]  F. Gao,et al.  Chemistry of Alanine on Pd(1 1 1): Temperature-programmed desorption and X-ray photoelectron spectroscopic study , 2007 .

[4]  F. Gao,et al.  Chemistry of glycine on Pd(111) : Temperature-programmed desorption and X-ray photoelectron spectroscopic study , 2007 .

[5]  M. Barteau,et al.  STM study of glycine on TiO2(110) single crystal surfaces. , 2006, Journal of colloid and interface science.

[6]  F. Traeger Helium atom scattering from oxide surfaces. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  L. Ojamäe,et al.  IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. , 2006, Journal of colloid and interface science.

[8]  C. Wöll,et al.  Adsorption of atomic hydrogen on ZnO(1010): STM study. , 2006, Physical chemistry chemical physics : PCCP.

[9]  K. Kotsis,et al.  Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO. , 2006, Physical chemistry chemical physics : PCCP.

[10]  B. Meyer,et al.  Hydrogen induced metallicity on the ZnO(1010) surface. , 2005, Physical review letters.

[11]  J. N. Wilson,et al.  Reactions of glutaric acid on the TiO2(001) single crystal. Effect of surface reduction on the reaction pathway. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  I. Mikheenko,et al.  Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. , 2005, Biochemical Society transactions.

[13]  O. Dulub,et al.  Atomic-scale properties of low-index ZnO surfaces , 2004 .

[14]  H. Idriss,et al.  Probing the reaction pathways of DL-proline on TiO2 (001) single crystal surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  M. Muhler,et al.  Reactivity of ZnO surfaces toward maleic anhydride , 2004 .

[16]  S. M. Barlow,et al.  Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110). , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  C. Wöll Hydrogen adsorption on metal oxide surfaces: a reinvestigation using He-atom scattering , 2004 .

[18]  S. Krompiewski Modelling a spin-selective interface between ferromagnetic electrodes and a carbon nanotube—towards the enhanced giant magnetoresistance effect , 2004 .

[19]  V. Staemmler,et al.  Ab initio calculations for the 2s and 2p core level binding energies of atomic Zn, Zn metal, and Zn containing molecules , 2003 .

[20]  Byung-Gee Kim,et al.  Protein patterning on silicon-based surface using background hydrophobic thin film. , 2003, Biosensors & bioelectronics.

[21]  O. Dulub STM Study of the Geometric and Electronic Structure of ZnO (0001)-Zn, (0001bar)-O, (101bar 0), and (1120bar) Surfaces , 2002 .

[22]  J. N. Wilson,et al.  Reactions of maleic anhydride over TiO2 (001) single crystal surfaces , 2000 .

[23]  E. Williams,et al.  A study of photon-induced processes with adsorption-desorption of glycine at the TiO2(110)(1×2) surface , 2000 .

[24]  C. Wöll,et al.  Pyridine adsorption on the polar ZnO(0001) surface: Zn termination versus O termination , 2000 .

[25]  W. Yang,et al.  Adsorption of alanine on Cu(001) studied by scanning tunneling microscopy , 1999 .

[26]  E. Williams,et al.  Observations with synchrotron radiation (20–120 eV) of the TiO2(110)–glycine interface , 1999 .

[27]  W. Yang,et al.  Adsorption of glycine on Cu(001) and related step faceting and bunching , 1999 .

[28]  A. J. McQuillan,et al.  An In Situ Infrared Spectroscopic Study of the Adsorption of Lysine to TiO2 from an Aqueous Solution , 1998 .

[29]  Jef A. Helsen,et al.  Metals as Biomaterials , 1998 .

[30]  S. M. Barlow,et al.  A study of glycine adsorption on a Cu{110} surface using reflection absorption infrared spectroscopy , 1998 .

[31]  William N. Lipscomb,et al.  Recent Advances in Zinc Enzymology. , 1996, Chemical reviews.

[32]  B. Wood,et al.  A comparison of experimental and theoretically derived sensitivity factors for XPS , 1992 .

[33]  J. Vohs,et al.  Reaction pathways and intermediates in the decomposition of acetic and propionic acids on the polar surfaces of zinc oxide , 1988 .

[34]  B. Liedberg,et al.  An infrared reflection—absorption study of amino acids adsorbed on metal surfaces: l-histidine and l-phenylalanine on gold and copper , 1987 .

[35]  V. G. Aleshin,et al.  X-ray photoelectron spectra of mixed oxygenated cobalt(II)-amino acid-imidazole complexes , 1977 .

[36]  Christof Wöll,et al.  The chemistry and physics of zinc oxide surfaces , 2007 .

[37]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .