Why and how to de ne a similarity mea-sure for object based representation systems

Currently, in the Objects-Based Representation Systems, both classification and categorization are based on subsumption criterion. In practice, this criterion seems too strong as soon as we need to deal with incomplete or incoherent knowledge. The notion of similarity has been successfully used in many domains such as Data Analysis, Pattern Recognition, or Machine Learning to compare and to structure noisy knowledge. In this paper we present a preliminary work aiming at demonstrating the advantage of using a similarity measure instead of a subsumption criterion in the object-based representations. keywords Object-Based Representation, Similarity Measure, Classification, Categorization.

[1]  P. Sneath,et al.  Numerical Taxonomy , 1962, Nature.

[2]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[3]  A. Tversky Features of Similarity , 1977 .

[4]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[5]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Brian Falkenhainer,et al.  The Structure-Mapping Engine * , 2003 .

[8]  C. Granger An application of possibility theory to object recognition , 1988 .

[9]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[10]  Paul Thagard,et al.  Analogical Mapping by Constraint Satisfaction , 1989, Cogn. Sci..

[11]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[12]  Jean-Paul Rossazza Utilisation de hiérarchies de classes floues pour la représentation de connaissances imprécises et sujettes à exceptions : le système "SORCIER" , 1990 .

[13]  François Rechenmann,et al.  Multiple Perspectives and Classification Mechanism in Object-Oriented Representation , 1990, ECAI.

[14]  Donato Malerba,et al.  Flexible Matching for Noisy Structural Descriptions , 1991, IJCAI.

[15]  Gilles Bisson Conceptual Clustering in a First Order Logic Representation , 1992, ECAI.

[16]  Gilles Bisson,et al.  Learning in FOL with a Similarity Measure , 1992, AAAI.

[17]  Amedeo Napoli,et al.  Représentations à objets et raisonnement par classification en intelligence artificielle , 1992 .

[18]  Sylvie Salotti-Lammin Filtrage flou et representation centree-objet pour raisonner par analogie : le systeme floran , 1992 .

[19]  Aurelio López-López,et al.  Conceptual graph matching: a flexible algorithm and experiments , 1992, J. Exp. Theor. Artif. Intell..

[20]  Jérôme Euzenat,et al.  Brief overview of T-tree: the Tropes Taxonomy building Tool , 1993 .

[21]  Gilles Bisson Kbg : induction de bases de connaissances en logique des predicats , 1993 .

[22]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[23]  Christine Decaestecker Apprentissage et outils statistiques en classification conceptuelle incrémentale , 1993 .

[24]  Kenneth D. Forbus,et al.  The Roles of Similarity in Transfer: Separating Retrievability From Inferential Soundness , 1993, Cognitive Psychology.

[25]  Peter E. Maher A similarity measure for conceptual graphs , 1993, Int. J. Intell. Syst..

[26]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.