Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs

[1]  M. Maus,et al.  SARS -CoV-2 T-cell immunity to variants of concern following vaccination , 2021, bioRxiv.

[2]  Benjamin P. Roscoe,et al.  Allelic variation in Class I HLA determines pre-existing memory responses to SARS-CoV-2 that shape the CD8+ T cell repertoire upon viral exposure , 2021, bioRxiv.

[3]  M. Nielsen,et al.  SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8+ T cell activation in COVID-19 patients , 2021, Science Immunology.

[4]  Chase W. Nelson,et al.  Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution , 2021, Virology.

[5]  D. Fremont,et al.  Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies , 2021, Nature Medicine.

[6]  R. Scheuermann,et al.  Negligible impact of SARS-CoV-2 variants on CD4+ and CD8+ T cell reactivity in COVID-19 exposed donors and vaccinees. , 2021, bioRxiv.

[7]  N. Sullivan,et al.  Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine - Preliminary Report. , 2021, The New England journal of medicine.

[8]  Heidi Ledford How ‘killer’ T cells could boost COVID immunity in face of new variants , 2021, Nature.

[9]  O. Laeyendecker,et al.  CD8+ T cell responses in COVID-19 convalescent individuals target conserved epitopes from multiple prominent SARS-CoV-2 circulating variants , 2021, medRxiv.

[10]  S. Mallal,et al.  Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases , 2021, Cell Reports Medicine.

[11]  A. Casadevall,et al.  SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. , 2021, The Journal of clinical investigation.

[12]  E. Lander,et al.  The SARS-CoV-2 RNA–protein interactome in infected human cells , 2020, Nature Microbiology.

[13]  S. Mallal,et al.  Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases , 2020, bioRxiv.

[14]  M. Matsui,et al.  Identification of HLA-A*02:01-Restricted Candidate Epitopes Derived from the Nonstructural Polyprotein 1a of SARS-CoV-2 That May Be Natural Targets of CD8+ T Cell Recognition In Vivo , 2020, Journal of Virology.

[15]  I. Ulitsky,et al.  SARS-CoV-2 utilizes a multipronged strategy to suppress host protein synthesis , 2020, bioRxiv.

[16]  Bjoern Peters,et al.  Immunological memory to SARS-CoV-2 assessed for up to eight months after infection , 2020, bioRxiv.

[17]  Mark M. Davis,et al.  Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19 , 2020, Cell.

[18]  Jourdan K. Ewoldt,et al.  SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway , 2020, bioRxiv.

[19]  G. MacBeath,et al.  Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein , 2020, Immunity.

[20]  M. Nielsen,et al.  SARS-CoV-2 genome-wide mapping of CD8 T cell recognition reveals strong immunodominance and substantial CD8 T cell activation in COVID-19 patients , 2020, bioRxiv.

[21]  J. Greenbaum,et al.  Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity , 2020, Cell.

[22]  Maria Virginia Ruiz Cuevas,et al.  Most non-canonical proteins uniquely populate the proteome or immunopeptidome. , 2020, Cell reports.

[23]  H. Achdout,et al.  The coding capacity of SARS-CoV-2 , 2020, Nature.

[24]  P. Doherty,et al.  Suboptimal SARS-CoV-2−specific CD8+ T cell response associated with the prominent HLA-A*02:01 phenotype , 2020, Proceedings of the National Academy of Sciences.

[25]  N. Krogan,et al.  SARS-CoV-2 ORF9c Is a Membrane-Associated Protein that Suppresses Antiviral Responses in Cells , 2020, bioRxiv.

[26]  M. V. van Buuren,et al.  Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes , 2020, Genome Medicine.

[27]  E. Walsh,et al.  Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults , 2020, Nature.

[28]  D. Altmann,et al.  SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection , 2020, Science Immunology.

[29]  Martin Linster,et al.  SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls , 2020, Nature.

[30]  Edward C. Holmes,et al.  A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology , 2020, Nature Microbiology.

[31]  J. Mascola,et al.  An mRNA Vaccine against SARS-CoV-2 — Preliminary Report , 2020, The New England journal of medicine.

[32]  N. Ban,et al.  SARS-CoV-2 Nsp1 binds ribosomal mRNA channel to inhibit translation , 2020, bioRxiv.

[33]  Morten Nielsen,et al.  Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19 , 2020, Cell.

[34]  A. Sette,et al.  Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome , 2020, Science Immunology.

[35]  James T. Gordy,et al.  The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development , 2020, Journal of Virology.

[36]  M. Park,et al.  Immune evasion via SARS-CoV-2 ORF8 protein? , 2020, Nature Reviews Immunology.

[37]  G. A. Efimov,et al.  SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors , 2020, Immunity.

[38]  T. Pan,et al.  The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC-I , 2020, bioRxiv.

[39]  J. Greenbaum,et al.  Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals , 2020, Cell.

[40]  M. Schwartz,et al.  The coding capacity of SARS-CoV-2 , 2020, Nature.

[41]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[42]  Abhinav Nellore,et al.  Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2 , 2020, Journal of Virology.

[43]  Katie M. Campbell,et al.  Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach , 2020, bioRxiv.

[44]  E. Callaway The race for coronavirus vaccines: a graphical guide , 2020, Nature.

[45]  Hyeshik Chang,et al.  The Architecture of SARS-CoV-2 Transcriptome , 2020, Cell.

[46]  R. Scheuermann,et al.  A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2 , 2020, Cell Host & Microbe.

[47]  M. Mann,et al.  Pervasive functional translation of noncanonical human open reading frames , 2020, Science.

[48]  N. Hacohen,et al.  Thousands of novel unannotated proteins expand the MHC I immunopeptidome in cancer , 2020, bioRxiv.

[49]  E. Holmes,et al.  A new coronavirus associated with human respiratory disease in China , 2020, Nature.

[50]  E. Holmes,et al.  Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding , 2020, The Lancet.

[51]  N. Hacohen,et al.  A large peptidome dataset improves HLA class I epitope prediction across most of the human population , 2019, Nature Biotechnology.

[52]  M. Schwartz,et al.  Comprehensive annotations of human herpesvirus 6A and 6B genomes reveal novel and conserved genomic features , 2019, bioRxiv.

[53]  D. Tscharke,et al.  Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses , 2019, Nature Communications.

[54]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[55]  A. Heck,et al.  Pre-fractionation Extends but also Creates a Bias in the Detectable HLA Class Ι Ligandome , 2019, Journal of proteome research.

[56]  A. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[57]  M. Altfeld,et al.  Interactions Between KIR3DS1 and HLA-F Activate Natural Killer Cells to Control HCV Replication in Cell Culture. , 2018, Gastroenterology.

[58]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[59]  Ralf Zimmer,et al.  Improved Ribo-seq enables identification of cryptic translation events , 2018, Nature Methods.

[60]  Javier G. Magadán,et al.  Influenza A Virus Negative Strand RNA Is Translated for CD8+ T Cell Immunosurveillance , 2018, The Journal of Immunology.

[61]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[62]  Markus Müller,et al.  High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferonγ-Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome* , 2017, Molecular & Cellular Proteomics.

[63]  Jennifer G. Abelin,et al.  Mass Spectrometry Profiling of HLA‐Associated Peptidomes in Mono‐allelic Cells Enables More Accurate Epitope Prediction , 2017, Immunity.

[64]  David Gfeller,et al.  Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide–HLA Interactions , 2016, The Journal of Immunology.

[65]  B. Walker,et al.  Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses , 2016, Journal of Virology.

[66]  N. Shastri,et al.  Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance , 2016, Immunological reviews.

[67]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[68]  Arun K. Ghosh,et al.  Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs , 2016, The Journal of Immunology.

[69]  M. Nielsen,et al.  Defining the HLA class I‐associated viral antigen repertoire from HIV‐1‐infected human cells , 2015, European journal of immunology.

[70]  I. Hoof,et al.  Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation , 2015, Front. Immunol..

[71]  Guang Lan Zhang,et al.  Physical detection of influenza A epitopes identifies a stealth subset on human lung epithelium evading natural CD8 immunity , 2015, Proceedings of the National Academy of Sciences.

[72]  Nicholas T Ingolia,et al.  Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. , 2014, Cell reports.

[73]  Clemencia Pinilla,et al.  Measurement of MHC/Peptide Interactions by Gel Filtration or Monoclonal Antibody Capture , 2013, Current protocols in immunology.

[74]  Anthony W. Purcell,et al.  Kinetics of Antigen Expression and Epitope Presentation during Virus Infection , 2013, PLoS pathogens.

[75]  Marco Y. Hein,et al.  Decoding Human Cytomegalovirus , 2012, Science.

[76]  R. Ketteler On programmed ribosomal frameshifting: the alternative proteomes , 2012, Front. Gene..

[77]  J. Neefjes,et al.  Towards a systems understanding of MHC class I and MHC class II antigen presentation , 2011, Nature Reviews Immunology.

[78]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[79]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[80]  D. Watkins,et al.  CD8+ T Cell Recognition of Cryptic Epitopes Is a Ubiquitous Feature of AIDS Virus Infection , 2010, Journal of Virology.

[81]  M. Bouvier,et al.  MHC class I antigen presentation: learning from viral evasion strategies , 2009, Nature Reviews Immunology.

[82]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[83]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[84]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[85]  Steven J Mack,et al.  Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. , 2008, Human immunology.

[86]  M. Loeb,et al.  Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes , 2008, Proceedings of the National Academy of Sciences.

[87]  R. Zinkernagel,et al.  Immunological Memory , 2006 .

[88]  K. Tao,et al.  Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine , 2004, Immunology Letters.

[89]  J. Altman,et al.  MHC‐Peptide Tetramers to Visualize Antigen‐Specific T Cells , 2003, Current protocols in immunology.

[90]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[91]  D. Kostyu,et al.  Ramifications of HLA class I polymorphism and population genetics for vaccine development , 2001, Genetic epidemiology.

[92]  A Sette,et al.  Two complementary methods for predicting peptides binding major histocompatibility complex molecules. , 1997, Journal of molecular biology.

[93]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.