A novel Fe-rich non-equiatomic medium-entropy alloy with superior mechanical properties

[1]  N. P. Gurao,et al.  Novel Alloy Design Concepts Enabling Enhanced Mechanical Properties of High Entropy Alloys , 2022, Frontiers in Materials.

[2]  S. Guan,et al.  Microstructure of and mechanical properties of an as-cast fine-grain dual-phase Fe-based high entropy alloy formed via solid-state phase transformation , 2022, Materials Science and Engineering: A.

[3]  J. Gubicza,et al.  Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion , 2021, International Journal of Plasticity.

[4]  Wei Liu,et al.  Toward tunable mechanical behavior and enhanced elastocaloric effect in NiTi alloy by gradient structure , 2021, Acta Materialia.

[5]  D. Beniwal,et al.  Learning phase selection and assemblages in High-Entropy Alloys through a stochastic ensemble-averaging model , 2021 .

[6]  S. Suwas,et al.  Design of a new cobalt base nano-lamellar eutectic high entropy alloy , 2021 .

[7]  Joysurya Basu,et al.  Local Composition Migration Induced Microstructural Evolution and Mechanical Properties of Non-equiatomic Fe40Cr25Ni15 Al15Co5 Medium-Entropy Alloy , 2021, Metallurgical and Materials Transactions A.

[8]  S. Gorsse,et al.  Designing high entropy superalloys for elevated temperature application , 2020 .

[9]  N. Mukhopadhyay,et al.  Phase evolution and mechanical properties of non-equiatomic Fe–Mn–Ni–Cr–Al–Si–C high entropy steel , 2020, Journal of Alloys and Compounds.

[10]  Hyoung-Seop Kim,et al.  Towards ferrous medium-entropy alloys with low-cost and high-performance , 2020 .

[11]  H. Yin,et al.  Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys , 2020 .

[12]  V. Uhlenwinkel,et al.  Early stage phase separation of AlCoCr0.75Cu0.5FeNi high-entropy powder at the nanoscale , 2020, 2005.04039.

[13]  H. Kato,et al.  Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys , 2019, Scripta Materialia.

[14]  D. Miracle High entropy alloys as a bold step forward in alloy development , 2019, Nature Communications.

[15]  C. Dong,et al.  Formation of cuboidal B2 nanoprecipitates and microstructural evolution in the body-centered-cubic Al0.7NiCoFe1.5Cr1.5 high-entropy alloy , 2019, Journal of Alloys and Compounds.

[16]  C. Zhang,et al.  Non-equiatomic FeNiCoAl-based high entropy alloys with multiscale heterogeneous lamella structure for strength and ductility , 2019, Materials Science and Engineering: A.

[17]  Qian Xiao,et al.  High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys , 2018, Nature Communications.

[18]  E. Lavernia,et al.  A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength , 2018, Science Advances.

[19]  Joysurya Basu,et al.  Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy , 2018, Journal of Alloys and Compounds.

[20]  Chuang Dong,et al.  Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions , 2018 .

[21]  Xi Jin,et al.  A hierarchical nanostructured Fe34Cr34Ni14Al14Co4 high-entropy alloy with good compressive mechanical properties , 2018 .

[22]  S. Praveen,et al.  High‐Entropy Alloys: Potential Candidates for High‐Temperature Applications – An Overview , 2018 .

[23]  L. Mädler,et al.  Processing of High-Entropy AlCoCr0.75Cu0.5FeNi Alloy by Spray Forming , 2017, Journal of Materials Engineering and Performance.

[24]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[25]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[26]  Z. Cai,et al.  Effect of Ti content on the microstructure and mechanical behavior of (Fe36Ni18Mn33Al13)100−xTix high entropy alloys , 2016 .

[27]  Chuang Dong,et al.  A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al 0.7 CoCrFe 2 Ni with prominent tensile properties , 2016 .

[28]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[29]  H. Fu,et al.  Microstructure, fracture toughness and compressive property of as-cast and directionally solidified NiAl-based eutectic composite , 2016 .

[30]  N. Jones,et al.  High-entropy alloys: a critical assessment of their founding principles and future prospects , 2016 .

[31]  Baolong Zheng,et al.  Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy , 2016 .

[32]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[33]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[34]  H. Bei,et al.  Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys , 2013 .

[35]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[36]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[37]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[38]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[39]  A. Miedema,et al.  Cohesion in alloys — fundamentals of a semi-empirical model , 1980 .

[40]  V. Hariharan,et al.  Effect of Zn Addition on Phase Selection in AlCrFeCoNiZn High-Entropy Alloy , 2022, SSRN Electronic Journal.

[41]  Jincheng Wang,et al.  Rapid alloy design from superior eutectic high-entropy alloys , 2022, Scripta Materialia.

[42]  B. S. Murty,et al.  Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy , 2011 .