AM-ConvGRU: a spatio-temporal model for typhoon path prediction

[1]  Marcin Woźniak,et al.  MobileGCN applied to low-dimensional node feature learning , 2021, Pattern Recognit..

[2]  Dawid Połap,et al.  Body Pose Prediction Based on Motion Sensor Data and Recurrent Neural Network , 2021, IEEE Transactions on Industrial Informatics.

[3]  Rui Dai,et al.  Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data , 2020, KDD.

[4]  Liu Yanbing,et al.  Bayonet-corpus: a trajectory prediction method based on bayonet context and bidirectional GRU , 2020, Digit. Commun. Networks.

[5]  Jianfeng Wu,et al.  Streamflow and rainfall forecasting by two long short-term memory-based models , 2020 .

[6]  Wei Li,et al.  High temporal resolution rainfall–runoff modeling using long-short-term-memory (LSTM) networks , 2020, Neural Computing and Applications.

[7]  Dafang Zhang,et al.  Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting , 2019, AAAI.

[8]  Balázs Kégl,et al.  Deep Learning for Hurricane Track Forecasting from Aligned Spatio-temporal Climate Datasets , 2018, NIPS 2018.

[9]  Brendan Tran Morris,et al.  Convolutional Neural Networkfor Trajectory Prediction , 2018, ECCV Workshops.

[10]  Yun Fu,et al.  Image Super-Resolution Using Very Deep Residual Channel Attention Networks , 2018, ECCV.

[11]  Philip S. Yu,et al.  PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning , 2018, ICML.

[12]  Chung Choo Chung,et al.  Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[13]  Sam Ganzfried,et al.  Predicting Hurricane Trajectories using a Recurrent Neural Network , 2018, AAAI.

[14]  Philip S. Yu,et al.  PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs , 2017, NIPS.

[15]  Tao Mei,et al.  Learning Multi-attention Convolutional Neural Network for Fine-Grained Image Recognition , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[16]  Zhanxing Zhu,et al.  Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting , 2017, IJCAI.

[17]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[18]  Yang Wang,et al.  Identifying Different Transportation Modes from Trajectory Data Using Tree-Based Ensemble Classifiers , 2017, ISPRS Int. J. Geo Inf..

[19]  Abdollah Homaifar,et al.  A Sparse Recurrent Neural Network for Trajectory Prediction of Atlantic Hurricanes , 2016, GECCO.

[20]  Heng-Tze Cheng,et al.  Wide & Deep Learning for Recommender Systems , 2016, DLRS@RecSys.

[21]  Prabhat,et al.  Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets , 2016, ArXiv.

[22]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[23]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Christopher Joseph Pal,et al.  Delving Deeper into Convolutional Networks for Learning Video Representations , 2015, ICLR.

[25]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[26]  Christopher D. Manning,et al.  Effective Approaches to Attention-based Neural Machine Translation , 2015, EMNLP.

[27]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[28]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[29]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[30]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[31]  Wei Zhang,et al.  An Overview of the China Meteorological Administration Tropical Cyclone Database , 2014 .

[32]  Rita Kovordanyi,et al.  Tropical cyclone track forecasting techniques ― A review , 2012 .

[33]  Wei Zhang,et al.  Back Propogation(BP)-neural network for tropical cyclone track forecast , 2011, 2011 19th International Conference on Geoinformatics.

[34]  K. Chau,et al.  A hybrid model coupled with singular spectrum analysis for daily rainfall prediction , 2010 .

[35]  Sung-Hoe Huh,et al.  Typhoon Track Prediction by a Support Vector Machine Using Data Reduction Methods , 2005, CIS.

[36]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[37]  Sim D. Aberson,et al.  Five-Day Tropical Cyclone Track Forecasts in the North Atlantic Basin , 1998 .

[38]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[39]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[40]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[41]  A. Preprint,et al.  HIGH TEMPORAL RESOLUTION RAINFALL RUNOFF MODELLING USING LONG-SHORT-TERM-MEMORY (LSTM) NETWORKS , 2020 .

[42]  Hyojin Kim,et al.  Deep-Hurricane-Tracker: Tracking and Forecasting Extreme Climate Events , 2019, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[43]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[44]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[45]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[46]  R. T. Merrill A statistical tropical cyclone motion forecasting system for the Gulf of Mexico , 1980 .

[47]  C. J. Neumann An alternate to the HURRAN (Hurricane Analog) tropical cyclone forecast system , 1972 .