Erratum to: A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem

Even after more than three decades of intensive research in the field of contact mechanics, there is still a great need for improving the numerical methods. Recent investigations on the 2D Hertzian contact problem clearly showed significantly varying results for different finite element versions. In this paper we will compare the analytical solution of the 2D Hertzian contact problem with the numerical results of the classical h-version with uniform and locally refined meshes, as well as with the p-, the hp-, and the rp-version of the FEM. The penalty method is used to incorporate the contact constraints.

[1]  S. Chan,et al.  A finite element method for contact problems of solid bodies—Part I. Theory and validation , 1971 .

[2]  Yavuz Başar,et al.  A general high‐order finite element formulation for shells at large strains and finite rotations , 2003 .

[3]  Ernst Rank,et al.  An rp-adaptive finite element method for elastoplastic problems , 2004 .

[4]  Z. Yosibash,et al.  THE p-VERSION OF THE FINITE ELEMENT METHOD IN INCREMENTAL ELASTO-PLASTIC ANALYSIS , 1993 .

[5]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[6]  Ernst Rank,et al.  The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .

[7]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[8]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[9]  H. Broeker,et al.  Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM , 1999 .

[10]  Alexander Konyukhov,et al.  Incorporation of contact for high-order finite elements in covariant form , 2009 .

[11]  Ernst Rank,et al.  An rp-adaptive finite element method for the deformation theory of plasticity , 2007 .

[12]  Ernst Rank,et al.  The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity , 2001 .

[13]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[14]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[15]  Z. Yosibash,et al.  On volumetric locking‐free behaviour of p‐version finite elements under finite deformations , 2007 .

[16]  Oliver Kraft,et al.  Development of a Simulation Tool for Wear in Microsystems , 2005 .

[17]  Ivo Babuška,et al.  Approximation properties of the h-p version of the finite element method , 1996 .

[18]  Ernst Rank,et al.  pq-Adaptive solid finite elements for three-dimensional plates and shells , 2007 .

[19]  E. Ramm,et al.  Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .

[20]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[21]  E. A. Wilson,et al.  Finite element analysis of elastic contact problems using differential displacements , 1970 .

[22]  Joseph Edward Shigley,et al.  Mechanical engineering design , 1972 .

[23]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[24]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[25]  Tamás Szabó,et al.  Solution of contact problem using the hp-version of the finite element method☆ , 1999 .

[26]  Stefan Hartmann Kontaktanalyse dünnwandiger Strukturen bei großen Deformationen , 2007 .

[27]  Peter Wriggers,et al.  Analysis and Simulation of Contact Problems , 2006 .

[28]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[29]  E. Rank,et al.  hp‐Version finite elements for geometrically non‐linear problems , 1995 .

[30]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[31]  Ernst Rank,et al.  p-FEM applied to finite isotropic hyperelastic bodies , 2003 .

[32]  Pauli Pedersen,et al.  A Direct analysis of elastic contact using super elements , 2006 .

[33]  Christof Eck,et al.  A residual–based error estimator for BEM–discretizations of contact problems , 2003, Numerische Mathematik.

[34]  Ernst Rank,et al.  A p‐version finite element approach for two‐ and three‐dimensional problems of the J2 flow theory with non‐linear isotropic hardening , 2002 .

[35]  E. Rank,et al.  High order finite elements for shells , 2005 .

[36]  Tamás Szabó,et al.  Solution of contact optimization problems of cylindrical bodies using hp‐FEM , 2002 .

[37]  Hertz On the Contact of Elastic Solids , 1882 .

[38]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[39]  Ernst Rank,et al.  The p‐version of the FEM for computational contact mechanics , 2008 .

[40]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[41]  E. Rank,et al.  p-FEM for finite deformation powder compaction , 2008 .

[42]  R. Actis,et al.  Solution of elastic-plastic stress analysis problems by the P-version of the finite element method , 1995 .

[43]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[44]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[45]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .

[46]  Ernst Rank,et al.  On the accuracy of p-version elements for the Reissner-Mindlin plate problem , 1998 .