Optimality Conditions for a Simple Convex Bilevel Programming Problem

The problem to find a best solution within the set of optimal solutions of a convex optimization problem is modeled as a bilevel programming problem. It is shown that regularity conditions like Slater’s constraint qualification are never satisfied for this problem. If the lower-level problem is replaced with its (necessary and sufficient) optimality conditions, it is possible to derive a necessary optimality condition for the resulting problem. An example is used to show that this condition in not sufficient even if the initial problem is a convex one. If the lower-level problem is replaced using its optimal value, it is possible to obtain an optimality condition that is both necessary and sufficient in the convex case.