Renormalisation of non-differentiable potentials

[1]  N. Dupuis,et al.  The nonperturbative functional renormalization group and its applications , 2020, Physics Reports.

[2]  B. Delamotte,et al.  Surprises in O(N) Models: Nonperturbative Fixed Points, Large N Limits, and Multicriticality. , 2017, Physical review letters.

[3]  A. Trombettoni,et al.  Berezinskii–Kosterlitz–Thouless transition and criticality of an elliptic deformation of the sine-Gordon model , 2017, Journal of Physics A: Mathematical and Theoretical.

[4]  A. Trombettoni,et al.  Pseudo-periodic natural Higgs inflation , 2017, Nuclear Physics B.

[5]  R. Sasaki Confining non-analytic exponential potential $V(x)= g^2\exp\,(2|x|)$ and its exact Bessel-function solvability , 2016, 1611.02467.

[6]  M. Znojil,et al.  One-dimensional Schrödinger equation with non-analytic potential V(x) = − g 2 exp (− ∣x∣) and its exact Bessel-function solvability , 2016, 1605.07310.

[7]  I. Nándori Coulomb gas and sine-Gordon model in arbitrary dimension , 2011, Nuclear Physics B.

[8]  J. Alexandre,et al.  Comments on branon dressing and the standard model , 2009, 0910.5150.

[9]  Y. Burnier,et al.  Effective action of a five-dimensional domain wall , 2008, 0812.2227.

[10]  J. Alexandre,et al.  Branon stabilization from fermion-induced radiative corrections , 2008, 0812.1307.

[11]  N. Mavromatos,et al.  Non-renormalization for the Liouville wave function , 2008, 0801.2557.

[12]  Jinn-Ouk Gong,et al.  Second order general slow-roll power spectrum , 2004, hep-ph/0405155.

[13]  M. Bordag,et al.  Nonsmooth backgrounds in quantum field theory , 2004, hep-th/0404069.

[14]  Pasquale Sodano,et al.  O(N) symmetric extension of the sine-Gordon equation , 2003, hep-th/0304112.

[15]  D. Litim Derivative expansion and renormalisation group flows , 2001, hep-th/0111159.

[16]  J. Alexandre,et al.  Functional Callan-Symanzik equation for QED , 2001, hep-th/0111152.

[17]  Janos Polonyi,et al.  Lectures on the functional renormalization group method , 2001, hep-th/0110026.

[18]  J. Cembranos,et al.  Brane skyrmions and wrapped states , 2001, hep-ph/0106322.

[19]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[20]  J. Alexandre,et al.  Functional Callan–Symanzik Equations , 2000, hep-th/0010128.

[21]  A. Dobado,et al.  The dynamics of the Goldstone bosons on the brane , 2000, hep-ph/0007100.

[22]  T. Kugo,et al.  Probing extra dimensions using Nambu-Goldstone bosons , 1999, hep-ph/9912496.

[23]  M. Bandō,et al.  BRANE FLUCTUATIONS AND SUPPRESSION OF KALUZA-KLEIN MODE COUPLINGS , 1999, hep-ph/9906549.

[24]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[25]  T. Morris Derivative expansion of the exact renormalization group , 1994, hep-ph/9403340.

[26]  T. Morris The Exact renormalization group and approximate solutions , 1993, hep-ph/9308265.

[27]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[28]  C. Wetterich,et al.  Average action and the renormalization group equations , 1991 .

[29]  C. Wetterich,et al.  Average action for the N-component ϕ4 theory , 1990 .

[30]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[31]  S. Coleman There are no Goldstone bosons in two dimensions , 1973 .

[32]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[33]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[34]  J. J. Sakurai,et al.  Modern Quantum Mechanics, Revised Edition , 1995 .

[35]  A. Starobinsky Spectrum of adiabatic perturbations in the universe when there are singularities in the inflation potential , 1992 .