The factorization method for a class of inverse elliptic problems

In this paper the factorization method from inverse scattering theory and impedance tomography is extended to a class of general elliptic differential equations in divergence form. The inverse problem is to determine the interface ∂Ω of an interior change of the material parameters from the Neumann-Dirichlet map. Since absorption is allowed a suitable combination of the real and imaginary part of the Neumann-Dirichlet map is needed to explicitely characterize Ω by the data. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[2]  Martin Bruehl Gebietserkennung in der elektrischen Impedanztomographie [online] , 1999 .

[3]  M. Hanke,et al.  Numerical implementation of two noniterative methods for locating inclusions by impedance tomography , 2000 .

[4]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[5]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[6]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[7]  Fioralba Cakoni,et al.  The linear sampling method for anisotropic media , 2002 .

[8]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[9]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[10]  Kurt Bryan,et al.  An Inverse Problem in Thermal Imaging , 1994, SIAM J. Appl. Math..

[11]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[12]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[13]  N I Grinberg,et al.  The linear sampling method in inverse obstacle scattering for impedance boundary conditions , 2002 .

[14]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[15]  Margaret Cheney,et al.  The Linear Sampling Method and the MUSIC Algorithm , 2001 .

[16]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[17]  Allaberen Ashyralyev,et al.  Partial Differential Equations of Elliptic Type , 2004 .

[18]  Stefan Ritter,et al.  A linear sampling method for inverse scattering from an open arc Inverse Problems , 2000 .

[19]  David Isaacson,et al.  Electric current computed tomography eigenvalues , 1990 .

[20]  Andreas Kirsch,et al.  New characterizations of solutions in inverse scattering theory , 2000 .

[21]  Andreas Kirsch,et al.  Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .