Using Observed Residual Error Structure Yields the Best Estimates of Individual Growth Parameters

Obtaining the best possible estimates of individual growth parameters is essential in studies of physiology, fisheries management, and conservation of natural resources since growth is a key component of population dynamics. In the present work, we use data of an endangered fish species to demonstrate the importance of selecting the right data error structure when fitting growth models in multimodel inference. The totoaba (Totoaba macdonaldi) is a fish species endemic to the Gulf of California increasingly studied in recent times due to a perceived threat of extinction. Previous works estimated individual growth using the von Bertalanffy model assuming a constant variance of length-at-age. Here, we reanalyze the same data under five different variance assumptions to fit the von Bertalanffy and Gompertz models. We found consistent significant differences between the constant and nonconstant error structure scenarios and provide an example of the consequences using the growth performance index ϕ′ to show how using the wrong error structure can produce growth parameter values that can lead to biased conclusions. Based on these results, for totoaba and other related species, we recommend using the observed error structure to obtain the individual growth parameters.

[1]  C. Winsor,et al.  The Gompertz Curve as a Growth Curve. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Thomas B. L. Kirkwood,et al.  Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’ , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  J. T. Ponce‐Palafox,et al.  The spotted rose snapper (Lutjanus guttatus Steindachner 1869) farmed in marine cages: review of growth models , 2018 .

[4]  Esteban M. Pérez-Arvizu,et al.  Variabilidad estacional de la clorofila a y su respuesta a condiciones El Niño y La Niña en el Norte del Golfo de California , 2013 .

[5]  Hiroshi Shono Efficiency of the finite correction of Akaike's Information Criteria. , 2000 .

[6]  D. S. Jordan,et al.  Notes on the Totuava (Cynoscion macdonaldi Gilbert) , 1916 .

[7]  D. Lluch-Cota,et al.  Modeling of Growth Depensation of Geoduck Clam Panopea globosa Based on a Multimodel Inference Approach , 2016, Journal of Shellfish Research.

[8]  David A. Ratkowsky,et al.  Handbook of nonlinear regression models , 1990 .

[9]  J. Garza,et al.  Panmixia in a Critically Endangered Fish: The Totoaba (Totoaba macdonaldi) in the Gulf of California. , 2016, The Journal of heredity.

[10]  L. Bertalanffy,et al.  A quantitative theory of organic growth , 1938 .

[11]  S. Midway,et al.  Trends in Growth Modeling in Fisheries Science , 2021, Fishes.

[12]  J. C. Guevara The conservation of Totoaba macdonaldi (Gilbert), (Pisces: Sciaenidae), in the Gulf of California, Mexico , 1990 .

[13]  M. A. Cisneros-Mata,et al.  Life History and Conservation of Totoaba macdonaldi , 1995 .

[14]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[15]  S. Nagy,et al.  Growth features of the Amur sleeper, Perccottus glenii (Actinopterygii: Perciformes: Odontobutidae), in the invaded Carpathian Basin, Hungary , 2017 .

[16]  K. Lorenzen A simple von Bertalanffy model for density-dependent growth in extensive aquaculture, with an application to common carp (Cyprinus carpio) , 1996 .

[17]  I. J. Myung,et al.  Tutorial on maximum likelihood estimation , 2003 .

[18]  Individual growth analysis of the Pacific yellowlegs shrimp Penaeus californiensis via multi-criteria approach , 2020 .

[19]  S. Dong,et al.  THE INTERACTION OF SALINITY AND NA/K RATIO IN SEAWATER ON GROWTH, NUTRIENT RETENTION AND FOOD CONVERSION OF JUVENILE LITOPENAEUS VANNAMEI , 2006 .

[20]  S. Katsanevakis Modelling fish growth: model selection, multi-model inference and model selection uncertainty , 2006 .

[21]  F. Sánchez,et al.  Critically Endangered totoaba Totoaba macdonaldi: signs of recovery and potential threats after a population collapse , 2015 .

[22]  S. Vitale,et al.  Behavior of some growth performance indexes for exploited Mediterranean hake , 2012 .

[23]  J. Schnute,et al.  A New Approach to Length–Frequency Analysis: Growth Structure , 1980 .

[24]  M. Mangel,et al.  Estimating von Bertalanffy parameters with individual and environmental variations in growth , 2012, Journal of biological dynamics.

[25]  C. Hutchinson,et al.  Age Determination of the Yellow Irish Lord: Management Implications as a Result of New Estimates of Maximum Age , 2011 .

[26]  H. Gerritsen,et al.  Estimating growth parameters and growth variability from length frequency data using hierarchical mixture models , 2019, ICES Journal of Marine Science.

[27]  S. Cornell,et al.  A new framework for growth curve fitting based on the von Bertalanffy Growth Function , 2020, Scientific Reports.

[28]  M. Prein,et al.  Fitting growth with the von Bertalanffy growth function: a comparison of three approaches of multivariate analysis of fish growth in aquaculture experiments , 2005 .

[29]  John F. Walter,et al.  Updated estimate of the growth curve of Western Atlantic bluefin tuna , 2010 .

[30]  M. Dickey‐Collas,et al.  Effects of temperature and population density on von Bertalanffy growth parameters in Atlantic herring: a macro-ecological analysis , 2010 .

[31]  David A. Fournier,et al.  Impacts of atypical data on Bayesian inference and robust Bayesian approach in fisheries , 1999 .

[32]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[33]  S. Moolgavkar,et al.  A Method for Computing Profile-Likelihood- Based Confidence Intervals , 1988 .

[34]  F. Martínez-Jerónimo Description of the individual growth of Daphnia magna (Crustacea: Cladocera) through the von Bertalanffy growth equation. Effect of photoperiod and temperature , 2011, Limnology.

[35]  B. Letcher,et al.  Maintenance of phenotypic variation: repeatability, heritability and size-dependent processes in a wild brook trout population , 2011, Evolutionary applications.

[36]  Keith Sainsbury,et al.  Effect of Individual Variability on the von Bertalanffy Growth Equation , 1980 .