Dt 2 Is a Gain-of-Function MADS-Domain Factor Gene That Speci fi es Semideterminacy in Soybean

Jieqing Ping,a,1 Yunfeng Liu,a,1 Lianjun Sun,a,1 Meixia Zhao,a Yinghui Li,b Maoyun She,a Yi Sui,a,2 Feng Lin,a Xiaodong Liu,a Zongxiang Tang,a Hanh Nguyen,c Zhixi Tian,a,3 Lijuan Qiu,b Randall L. Nelson,d Thomas E. Clemente,c James E. Specht,c and Jianxin Maa,4 a Department of Agronomy, Purdue University, West Lafayette, Indiana 47907 b Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China cDepartment of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68583 d Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, U.S. Department of Agriculture–Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801

[1]  L. Heatherly,et al.  Managing Inputs for Peak Production , 2016 .

[2]  Hao Yu,et al.  A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. , 2013, Developmental cell.

[3]  Dan Wang,et al.  Genome-wide survey and expression analysis of the MADS-box gene family in soybean , 2013, Molecular Biology Reports.

[4]  C. Smaczniak,et al.  Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies , 2012, Development.

[5]  Scott A. Taylor,et al.  VEGETATIVE1 is essential for development of the compound inflorescence in pea , 2012, Nature Communications.

[6]  F. Huang,et al.  An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. , 2011, Journal of plant physiology.

[7]  C. M. Woodworth Genetics and breeding in the improvement of the soybean , 2011 .

[8]  V. Hegde Morphology and genetics of a new found determinate genotype in chickpea , 2011, Euphytica.

[9]  J. Schmutz,et al.  Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome , 2010, Proceedings of the National Academy of Sciences.

[10]  Rex T. Nelson,et al.  Abundance of SSR Motifs and Development of Candidate Polymorphic SSR Markers (BARCSOYSSR_1.0) in Soybean , 2010 .

[11]  Fabio Fornara,et al.  SnapShot: Control of Flowering in Arabidopsis , 2010, Cell.

[12]  J. Specht,et al.  Artificial selection for determinate growth habit in soybean , 2010, Proceedings of the National Academy of Sciences.

[13]  Baohui Liu,et al.  The Soybean Stem Growth Habit Gene Dt1 Is an Ortholog of Arabidopsis TERMINAL FLOWER11[W][OA] , 2010, Plant Physiology.

[14]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[15]  Hao Yu,et al.  Coming into bloom: the specification of floral meristems , 2009, Development.

[16]  J. Mathieu,et al.  Just say no: floral repressors help Arabidopsis bide the time. , 2009, Current opinion in plant biology.

[17]  Gang Wu,et al.  The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. , 2009, Developmental cell.

[18]  G. Stacey,et al.  Identification of Four Soybean Reference Genes for Gene Expression Normalization , 2008 .

[19]  Kalika Prasad,et al.  Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture , 2008, Proceedings of the National Academy of Sciences.

[20]  S. Singer,et al.  Inflorescence architecture: A developmental genetics approach , 1999, The Botanical Review.

[21]  Baohui Liu,et al.  QTL Mapping of Domestication-related Traits in Soybean (Glycine max) , 2007, Annals of botany.

[22]  H. Kong,et al.  Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. , 2007, Molecular phylogenetics and evolution.

[23]  M. Vandenbussche,et al.  Evolutionary complexity of MADS complexes. , 2007, Current opinion in plant biology.

[24]  Albert Weiss,et al.  Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions , 2007 .

[25]  Randall L. Nelson,et al.  Impacts of genetic bottlenecks on soybean genome diversity , 2006, Proceedings of the National Academy of Sciences.

[26]  R. Macknight,et al.  Conservation of Arabidopsis Flowering Genes in Model Legumes1[w] , 2005, Plant Physiology.

[27]  R. Shoemaker,et al.  Bridging Model and Crop Legumes through Comparative Genomics , 2005, Plant Physiology.

[28]  J. Doebley,et al.  Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae). , 2005, Molecular biology and evolution.

[29]  L. Heatherly,et al.  Effect of soybean stem growth habit on height and node number after beginning bloom in the midsouthern USA , 2004 .

[30]  E. Álvarez-Buylla,et al.  Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Rameau,et al.  DETERMINATE and LATE FLOWERING Are Two TERMINAL FLOWER1/CENTRORADIALIS Homologs That Control Two Distinct Phases of Flowering Initiation and Development in Pea Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.015701. , 2003, The Plant Cell Online.

[32]  Kalika Prasad,et al.  Mechanism underlying regulated expression of RFL, a conserved transcription factor, in the developing rice inflorescence , 2003, Mechanisms of Development.

[33]  Susan Shannon,et al.  A Mutation in the Arabidopsis TFL 1 Gene Affects Inf lorescence Meristem Development , 2002 .

[34]  James E. Specht,et al.  Soybean response to water : A QTL analysis of drought tolerance , 2001 .

[35]  E. Fridman,et al.  Two tightly linked QTLs modify tomato sugar content via different physiological pathways , 2001, Molecular Genetics and Genomics.

[36]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[37]  T. Clemente,et al.  Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. , 2000 .

[38]  P. Christou,et al.  ‘Green revolution’ genes encode mutant gibberellin response modulators , 1999, Nature.

[39]  G. Ditta,et al.  Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 Specify Meristem Fate , 1999, Plant Cell.

[40]  E. Coen,et al.  Separation of shoot and floral identity in Arabidopsis. , 1999, Development.

[41]  M. Ganal,et al.  The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. , 1998, Development.

[42]  R. Martienssen,et al.  The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. , 1998, Development.

[43]  E. Coen,et al.  Inflorescence Commitment and Architecture in Arabidopsis , 1997, Science.

[44]  M. Yanofsky,et al.  Molecular basis of the cauliflower phenotype in Arabidopsis , 1995, Science.

[45]  Cindy Gustafson-Brown,et al.  Regulation of the arabidopsis floral homeotic gene APETALA1 , 1994, Cell.

[46]  S. S. Martin,et al.  Registration of 'Thorne' soybean , 1993 .

[47]  D. Weigel,et al.  LEAFY controls floral meristem identity in Arabidopsis , 1992, Cell.

[48]  S. Gupta,et al.  Inheritance of Growth Habit in Pigeonpea , 1991 .

[49]  S. Shannon,et al.  A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. , 1991, The Plant cell.

[50]  Y. Elkind,et al.  Genetics of Semideterminate Growth Habit in Tomato , 1991 .

[51]  J. Specht,et al.  Application of the near-isogenic line gene mapping technique to isozyme markers , 1989 .

[52]  James W. Jones,et al.  Photoperiodically sensitive interval in time to flower of soybean , 1989 .

[53]  R. Shibles,et al.  Yield and Agronomic Performance of Semi-determinate and Indeterminate Soybean Stem Types 1 , 1982 .

[54]  R. L. Bernard Two Genes Affecting Stem Termination in Soybeans1 , 1972 .

[55]  C. Ting Genetic Studies on the Wild and Cultivated Soybeans1 , 1946 .