REVIEW OF METAMODELING TECHNIQUES FOR PRODUCT DESIGN WITH COMPUTATION-INTENSIVE PROCESSES

Computation-intensive design problems are becoming increasingly common, especially for large-size manufacturers such as those in the aerospace, automotive, and electronics industries. The computation burden is often caused by expensive analysis and simulation processes. Approximation or metamodeling techniques are often used to model these computation-intensive processes in order to improve efficiency. This work will review the current state-of-the-art on metamodeling-based techniques in support of product design. The review is organized from a practitioner’s perspective according to the role of metamodeling in supporting design. Challenges and future development of metamodeling will also be analyzed and discussed.

[1]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[2]  T. Simpson,et al.  Computationally Inexpensive Metamodel Assessment Strategies , 2002 .

[3]  T. Simpson,et al.  Efficient Pareto Frontier Exploration using Surrogate Approximations , 2000 .

[4]  L. Watson,et al.  Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization , 1998 .

[5]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[6]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[7]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[8]  J. F. Rodríguez,et al.  Sequential approximate optimization using variable fidelity response surface approximations , 2000 .

[9]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[10]  J. Renaud,et al.  New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 2 , 1998 .

[11]  Wei Chen,et al.  A robust concept exploration method for configuring complex systems , 1995 .

[12]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[13]  Sankaran Mahadevan,et al.  An Indicator Response Surface-Based Monte Carlo Method for Efficient Component and System Reliability Analysis , 2003, DAC 2003.

[14]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[15]  R. Grandhi,et al.  A global structural optimization technique using an interval method , 2001 .

[16]  Vassili Toropov,et al.  Multiparameter structural optimization using FEM and multipoint explicit approximations , 1993 .

[17]  Marc A. Stelmack,et al.  Framework for Multidisciplinary Design Based on Response-Surface Approximations , 1999 .

[18]  T. Simpson,et al.  Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .

[19]  Lih-Yuan Deng,et al.  Orthogonal Arrays: Theory and Applications , 1999, Technometrics.

[20]  Farrokh Mistree,et al.  Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size , 1999 .

[21]  J. Beck,et al.  A new adaptive importance sampling scheme for reliability calculations , 1999 .

[22]  John E. Renaud,et al.  Interactive Multiobjective Optimization Design Strategy for Decision Based Design , 2001 .

[23]  G. G. Wang,et al.  Mode-pursuing sampling method for global optimization on expensive black-box functions , 2004 .

[24]  William G. Cochran,et al.  Experimental Designs, 2nd Edition , 1950 .

[25]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[26]  Helena Szczerbicka,et al.  Analysis of Simulation Models with Fuzzy Graph Based Metamodeling , 1996, Perform. Evaluation.

[27]  George E. P. Box,et al.  Evolutionary Operation: A Statistical Method for Process Improvement , 1969 .

[28]  G. Gary Wang,et al.  ADAPTIVE RESPONSE SURFACE METHOD - A GLOBAL OPTIMIZATION SCHEME FOR APPROXIMATION-BASED DESIGN PROBLEMS , 2001 .

[29]  Kyung K. Choi,et al.  Selecting probabilistic approaches for reliability-based design optimization , 2004 .

[30]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[31]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[32]  Ilan Kroo,et al.  Collaborative optimization using response surface estimation , 1998 .

[33]  Y. Yeun,et al.  Managing approximation models in multiobjective optimization , 2002 .

[34]  Andrew Gelsey,et al.  Using Modeling Knowledge to Guide Design Space Search , 1998, Artif. Intell..

[35]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[36]  Martin Meckesheimer,et al.  Reliability Based Design Optimization Using Design Explorer , 2004 .

[37]  Raphael T. Haftka,et al.  Recent Advances in Approximation Concepts for Optimum Structural Design , 1993 .

[38]  Noel A Cressie,et al.  Spatial prediction and ordinary kriging , 1988 .

[39]  Timothy G. Trucano,et al.  Validation Methodology in Computational Fluid Dynamics , 2000 .

[40]  Toby J. Mitchell,et al.  An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.

[41]  Kemper Lewis,et al.  Multidimensional Design Visualization in Multiobjective Optimization , 2002 .

[42]  C. N. Madu,et al.  A fuzzy theoretic approach to simulation metamodeling , 1995 .

[43]  Xiaoping Du,et al.  The use of metamodeling techniques for optimization under uncertainty , 2001 .

[44]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[45]  Dapeng Wang Multidisciplinary design optimizaton with collaboration pursuing and domain decomposition : application to aircraft design , 2005 .

[46]  Kemper Lewis,et al.  A method for using legacy data for metamodel-based design of large-scale systems , 2004 .

[47]  T Watson Layne,et al.  Multidisciplinary Optimization of a Supersonic Transport Using Design of Experiments Theory and Response Surface Modeling , 1997 .

[48]  T. J. Mitchell,et al.  Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .

[49]  M. Sasena,et al.  Global optimization of problems with disconnected feasible regions via surrogate modeling , 2002 .

[50]  G. Gary Wang,et al.  An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions , 2005 .

[51]  Jack P. C. Kleijnen,et al.  Kriging for interpolation in random simulation , 2003, J. Oper. Res. Soc..

[52]  W. L. Oberkampf,et al.  Validation Methodology in Computational Fluid Dynamics (invited) , 2000 .

[53]  Songqing Shan,et al.  Introducing Rough Set for Design Space Exploration and Optimization , 2003, DAC 2003.

[54]  Z. Mourelatos,et al.  Probabilistic analysis of an automotive body-door system , 2004 .

[55]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[56]  C. Bloebaum,et al.  Development of visual design steering as an aid in large-scale multidisciplinary design optimization. Part II: method validation , 2002 .

[57]  Kemper Lewis,et al.  Visualization of multidimensional design and optimization data using cloud visualization , 2002, DAC 2002.

[58]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[59]  Andy J. Keane,et al.  A Knowledge-Based Approach To Response Surface Modelling in Multifidelity Optimization , 2003, J. Glob. Optim..

[60]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[61]  Kemper Lewis,et al.  Tuning a Hybrid Optimization Algorithm by Determining the Modality of the Design Space , 2001 .

[62]  Achille Messac,et al.  Extended Radial Basis Functions: More Flexible and Effective Metamodeling , 2004 .

[63]  T. W. Layne,et al.  A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models , 1998 .

[64]  John W. Bandler,et al.  Review of the Space Mapping Approach to Engineering Optimization and Modeling , 2000 .

[65]  Georges M. Fadel,et al.  Approximating Pareto curves using the hyper-ellipse , 1998 .

[66]  Timothy G. Trucano,et al.  Verification and validation. , 2005 .

[67]  G. G. Wang,et al.  Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .

[68]  Wei Chen,et al.  Local approximation of the efficient frontier in robust design , 2000 .

[69]  Christopher A. Mattson,et al.  Concept Selection in n-dimension Using s-Pareto Frontiers and Visualization , 2002 .

[70]  Kikuo Fujita,et al.  Voronoi Diagram Based Blending of Quadratic Response Surfaces for Cumulative Global Optimization , 2002 .

[71]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[72]  Raphael T. Haftka,et al.  Optimization and Experiments: A Survey , 1998 .

[73]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[74]  Farrokh Mistree,et al.  A procedure for robust design: Minimizing variations caused by noise factors and control factors , 1996 .

[75]  Farrokh Mistree,et al.  Statistical Experimentation Methods for Achieving Affordable Concurrent Systems Design , 1997 .

[76]  Urmila M. Diwekar,et al.  Better Optimization of Nonlinear Uncertain Systems (BONUS): A New Algorithm for Stochastic Programming Using Reweighting through Kernel Density Estimation , 2004, Ann. Oper. Res..

[77]  V. Markine,et al.  Refinements in the multi-point approximation method to reduce the effects of noisy structural responses , 1996 .

[78]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[79]  J. Dennis,et al.  MANAGING APPROXIMATION MODELS IN OPTIMIZATION , 2007 .

[80]  T. Simpson,et al.  Fuzzy Clustering Based Hierarchical Metamodeling For Space Reduction and Design Optimization , 2004 .

[81]  Layne T. Watson,et al.  Multidisciplinary Design Optimization , 2009, Encyclopedia of Optimization.

[82]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[83]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[84]  L. Watson,et al.  Reasonable Design Space Approach to Response Surface Approximation , 1999 .

[85]  Liqun Wang,et al.  A Random-Discretization Based Monte Carlo Sampling Method and its Applications , 2002 .

[86]  Liqun Wang,et al.  Reliability Assessment Using Discriminative Sampling and Metamodeling , 2005 .

[87]  Mark Schwabacher,et al.  Multilevel modelling for engineering design optimization , 1997, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[88]  J. Friedman Multivariate adaptive regression splines , 1990 .

[89]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[90]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[91]  T. Simpson,et al.  Analysis of support vector regression for approximation of complex engineering analyses , 2005, DAC 2003.

[92]  N. Cressie Spatial prediction and ordinary kriging , 1988 .

[93]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[94]  Jeong‐Soo Park Optimal Latin-hypercube designs for computer experiments , 1994 .

[95]  Wei Chen,et al.  ROBUST CONCEPT EXPLORATION OF PROPULSION SYSTEMS WITH ENHANCED MODEL APPROXIMATION CAPABILITIES , 2000 .

[96]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .

[97]  Ramana V. Grandhi,et al.  MULTIVARIATE HERMITE APPROXIMATION FOR DESIGN OPTIMIZATION , 1996 .

[98]  Dong-Hoon Choi,et al.  Sequential Approximate Optimization Using Kriging Metamodels , 2005 .

[99]  Henry P. Wynn,et al.  Screening, predicting, and computer experiments , 1992 .

[100]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[101]  Genichi Taguchi,et al.  Taguchi methods : design of experiments , 1993 .

[102]  Herbert A. Simon,et al.  Applications of machine learning and rule induction , 1995, CACM.

[103]  J. Renaud,et al.  Approximation in nonhierarchic system optimization , 1994 .

[104]  T. Simpson,et al.  Fuzzy clustering based hierarchical metamodeling for design space reduction and optimization , 2004 .

[105]  John Rasmussen,et al.  Nonlinear programming by cumulative approximation refinement , 1998 .

[106]  Manolis Papadrakakis,et al.  Structural optimization using evolution strategies and neural networks , 1998 .

[107]  S. B. Biggers,et al.  An Affordable Approach for Robust Design of Thick Laminated Composite Structure , 2000 .

[108]  G. Gary Wang,et al.  An Efficient Pareto Set Identification Approach for Multi-Objective Optimization on Black-Box Functions , 2004, DAC 2004.

[109]  Eliot Winer,et al.  Development of visual design steering as an aid in large-scale multidisciplinary design optimization. Part I: method development , 2002 .

[110]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[111]  Sankaran Mahadevan,et al.  Reliability analysis of automotive body-door subsystem , 2002, Reliab. Eng. Syst. Saf..

[112]  Cristina H. Amon,et al.  An engineering design methodology with multistage Bayesian surrogates and optimal sampling , 1996 .

[113]  John E. Renaud,et al.  Adaptive experimental design for construction of response surface approximations , 2001 .

[114]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[115]  Liping Wang,et al.  FLEXIBLE IMPLEMENTATION OF APPROXIMATION CONCEPTS IN AN MDO FRAMEWORK , 1998 .

[116]  Timothy W. Simpson,et al.  Analysis of support vector regression for approximation of complex engineering analyses , 2003, DAC 2003.

[117]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[118]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .