Stochastic calculus with respect to continuous finite quadratic variation processes
暂无分享,去创建一个
[1] C. S. G. David. Stochastic Analysis , 2021, Nature.
[2] L. Decreusefond,et al. Stochastic Analysis of the Fractional Brownian Motion , 1999 .
[3] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I , 1998 .
[4] J. Wolf. Transformations of semi-martingales and local dirichlet processes , 1997 .
[5] S. Tindel. Stochastic parabolic equations with anticipative initial condition , 1997 .
[6] Wolf Jochen. An Itô formula for local dirichlet processes , 1997 .
[7] Francesco Russo,et al. The generalized covariation process and Ito formula , 1995 .
[8] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[9] A. Shiryayev,et al. Quadratic covariation and an extension of Itô's formula , 1995 .
[10] Francesco Russo,et al. Forward, backward and symmetric stochastic integration , 1993 .
[11] H. Kuo,et al. White Noise: An Infinite Dimensional Calculus , 1993 .
[12] A. Russek. On an extension of the stochastic integral , 1991 .
[13] J. Potthoff,et al. Itô's lemma without non-anticipatory conditions , 1991 .
[14] M. Zakai. Stochastic integration, trace and the skeleton of Wiener functionals , 1990 .
[15] D. Nualart,et al. Stochastic processes possessing a skorohod integral representation , 1990 .
[16] F. Utzet,et al. Stratonovich integral and trace , 1990 .
[17] J. Bertoin. Sur Une Integrale Pour Les Processus A $\alpha$-Variation Bornee , 1989 .
[18] David Nualart,et al. Stochastic calculus with anticipating integrands , 1988 .
[19] J. Bertoin. Une extension d'une inégalité de Burkholder, Davis, Gundy pour les processus à α-variation bornée et applications , 1988 .
[20] H. Kuo. White noise approach to stochastic integration , 1988 .
[21] J. Bertoin. Les processus de dirichlet et tant qu'espace de banach , 1986 .
[22] J. Colombeau. Multiplication of distributions , 1983 .
[23] Héctor J. Sussmann,et al. An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point , 1977 .
[24] Annika Lang. Stochastic Partial Differential Equations , 2021, Computer Vision.
[25] M. Zähle. On the Link Between Fractional and Stochastic Calculus , 1999 .
[26] J. Kerstan. ORDINARY DIFFERENTIAL EQUATIONS WITH FRACTAL NOISE , 1997 .
[27] A. S. ÜstünelÉcole. Stochastic Analysis of the Fractional Brownian Motion , 1996 .
[28] P. Vallois,et al. Ito formula forC1-functions of semimartingales , 1996 .
[29] C. Stricker,et al. Componentwise and Vector Stochastic Integration with Respect to Certain Multi-Dimensional Continuous Local Martingales , 1995 .
[30] F. Russo. Colombeau Generalized Functions and Stochastic Analysis , 1994 .
[31] Terry Lyons,et al. Decomposition of Dirichlet Processes and its Application , 1994 .
[32] P. Protter. Stochastic integration and differential equations : a new approach , 1990 .
[33] P. Protter. Stochastic integration and differential equations , 1990 .
[34] Terry Lyons,et al. A crossing estimate for the canonical process on a Dirichlet space and tightness result , 1988 .
[35] J. Colombeau,et al. Elementary introduction to new generalized functions , 1985 .
[36] 渡辺 信三. Lectures on stochastic differential equations and Malliavin calculus , 1984 .
[37] S. Mohammed. Stochastic functional differential equations , 1984 .
[38] Hans Föllmer,et al. Calcul d'ito sans probabilites , 1981 .
[39] 福島 正俊. Dirichlet forms and Markov processes , 1980 .
[40] Hani J. Doss,et al. Liens entre equations di erentielles stochastiques et ordinaires , 1977 .