An Introduction to Temporal Graphs: An Algorithmic Perspective*

A temporal graph is, informally speaking, a graph that changes with time. When time is discrete and only the relationships between the participating entities may change and not the entities themselves, a temporal graph may be viewed as a sequence \(G_1,G_2\ldots ,G_l\) of static graphs over the same (static) set of nodes V. Though static graphs have been extensively studied, for their temporal generalization we are still far from having a concrete set of structural and algorithmic principles. Recent research shows that many graph properties and problems become radically different and usually substantially more difficult when an extra time dimension in added to them. Moreover, there is already a rich and rapidly growing set of modern systems and applications that can be naturally modeled and studied via temporal graphs. This, further motivates the need for the development of a temporal extension of graph theory. We survey here recent results on temporal graphs and temporal graph problems that have appeared in the Computer Science community.

[1]  Magnús M. Halldórsson,et al.  Approximating discrete collections via local improvements , 1995, SODA '95.

[2]  Elliot Meyerson,et al.  Graph-Theoretic Concepts in Computer Science , 2014, Lecture Notes in Computer Science.

[3]  R. Ravi,et al.  Rapid rumor ramification: approximating the minimum broadcast time , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[4]  Vassilis Kostakos Temporal Graphs , 2014, Encyclopedia of Social Network Analysis and Mining.

[5]  David Ilcinkas,et al.  On the Power of Waiting When Exploring Public Transportation Systems , 2011, OPODIS.

[6]  Fabian Kuhn,et al.  Dynamic networks: models and algorithms , 2011, SIGA.

[7]  Sven Oliver Krumke,et al.  On the Minimum Label Spanning Tree Problem , 1998, Inf. Process. Lett..

[8]  Brenda S. Baker,et al.  Gossips and telephones , 1972, Discret. Math..

[9]  Bernard Mans,et al.  On the exploration of time-varying networks , 2013, Theor. Comput. Sci..

[10]  Chen Avin,et al.  How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs) , 2008, ICALP.

[11]  Paul G. Spirakis,et al.  Causality, influence, and computation in possibly disconnected synchronous dynamic networks , 2012, J. Parallel Distributed Comput..

[12]  Paul G. Spirakis,et al.  New Models for Population Protocols , 2011, Synthesis Lectures on Distributed Computing Theory.

[13]  Paul G. Spirakis,et al.  Causality, influence, and computation in possibly disconnected synchronous dynamic networks , 2014, J. Parallel Distributed Comput..

[14]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[15]  Paul G. Spirakis,et al.  Mediated population protocols , 2011, Theor. Comput. Sci..

[16]  Illtyd Trethowan Causality , 1938 .

[17]  Xueliang Li,et al.  Spanning trees with many or few colors in edge-colored graphs , 1997, Discuss. Math. Graph Theory.

[18]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[19]  Jon M. Kleinberg,et al.  Protocols and impossibility results for gossip-based communication mechanisms , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[20]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[21]  Nancy A. Lynch,et al.  Distributed computation in dynamic networks , 2010, STOC '10.

[22]  Petter Holme,et al.  Modern temporal network theory: a colloquium , 2015, The European Physical Journal B.

[23]  Paul G. Spirakis,et al.  Simple and efficient local codes for distributed stable network construction , 2013, Distributed Computing.

[24]  Othon Michail An Introduction to Temporal Graphs: An Algorithmic Perspective* , 2016, Internet Math..

[25]  Othon Michail,et al.  Terminating distributed construction of shapes and patterns in a fair solution of automata , 2015, Distributed Computing.

[26]  Richard M. Karp,et al.  Randomized rumor spreading , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[27]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[28]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[29]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[30]  Scott Shenker,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[31]  Wieb Bosma,et al.  Algorithmic Number Theory , 2000, Lecture Notes in Computer Science.

[32]  Paul G. Spirakis,et al.  Ephemeral networks with random availability of links: diameter and connectivity , 2014, SPAA.

[33]  Afonso Ferreira,et al.  Complexity of Connected Components in Evolving Graphs and the Computation of Multicast Trees in Dynamic Networks , 2003, ADHOC-NOW.

[34]  Frank Harary,et al.  Dynamic graph models , 1997 .

[35]  Bernard Mans,et al.  On the treewidth of dynamic graphs , 2011, Theor. Comput. Sci..

[36]  Bernard Mans,et al.  Exploration of Periodically Varying Graphs , 2009, ISAAC.

[37]  Andrea E. F. Clementi,et al.  Flooding time in edge-Markovian dynamic graphs , 2008, PODC '08.

[38]  Amit Kumar,et al.  Connectivity and inference problems for temporal networks , 2000, STOC '00.

[39]  Paul G. Spirakis,et al.  Traveling salesman problems in temporal graphs , 2014, Theor. Comput. Sci..

[40]  A. Soifer The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators , 2008 .

[41]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[42]  Nicola Santoro,et al.  Time-varying graphs and dynamic networks , 2010, Int. J. Parallel Emergent Distributed Syst..

[43]  Fabian Kuhn,et al.  Lower Bounds on Information Dissemination in Dynamic Networks , 2012, DISC.

[44]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[45]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[46]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[47]  James B. Orlin,et al.  The complexity of dynamic languages and dynamic optimization problems , 1981, STOC '81.

[48]  Amin Saberi,et al.  An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem , 2010, SODA '10.

[49]  B. Pittel On spreading a rumor , 1987 .

[50]  Afonso Ferreira,et al.  Computing Shortest, Fastest, and Foremost Journeys in Dynamic Networks , 2003, Int. J. Found. Comput. Sci..

[51]  Kenneth A. Berman,et al.  Vulnerability of scheduled networks and a generalization of Menger's Theorem , 1996, Networks.

[52]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[53]  Christos D. Zaroliagis,et al.  Analysis and Experimental Evaluation of Time-Dependent Distance Oracles , 2015, ALENEX.

[54]  Paul G. Spirakis,et al.  Naming and Counting in Anonymous Unknown Dynamic Networks , 2012, SSS.

[55]  Thomas Erlebach,et al.  On Temporal Graph Exploration , 2015, ICALP.

[56]  Markus Bläser,et al.  A 3/4-Approximation Algorithm for Maximum ATSP with Weights Zero and One , 2004, APPROX-RANDOM.

[57]  Arthur L. Liestman,et al.  A survey of gossiping and broadcasting in communication networks , 1988, Networks.

[58]  John Augustine,et al.  Towards robust and efficient computation in dynamic peer-to-peer networks , 2011, SODA.

[59]  E T. Leighton,et al.  Introduction to parallel algorithms and architectures , 1991 .

[60]  Christos D. Zaroliagis,et al.  Distance Oracles for Time-Dependent Networks , 2015, Algorithmica.

[61]  Emanuele Viola,et al.  On the Complexity of Information Spreading in Dynamic Networks , 2013, SODA.

[62]  Marek Karpinski,et al.  Improved Inapproximability Results for the Shortest Superstring and Related Problems , 2013, CATS.

[63]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[64]  Jérôme Monnot The labeled perfect matching in bipartite graphs , 2005, Inf. Process. Lett..

[65]  Christian Scheideler Models and Techniques for Communication in Dynamic Networks , 2002, STACS.

[66]  Afonso Ferreira,et al.  Building a reference combinatorial model for MANETs , 2004, IEEE Network.

[67]  Michael J. Fischer,et al.  Computation in networks of passively mobile finite-state sensors , 2004, PODC '04.

[68]  Gerhard J. Woeginger,et al.  Paths and cycles in colored graphs , 2001, Australas. J Comb..

[69]  Roger Wattenhofer,et al.  Information dissemination in highly dynamic graphs , 2005, DIALM-POMC '05.

[70]  J. Orlin Some problems on dynamic/periodic graphs , 1983 .

[71]  Mohit Singh,et al.  A Randomized Rounding Approach to the Traveling Salesman Problem , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[72]  Éva Tardos,et al.  Efficient continuous-time dynamic network flow algorithms , 1998, Oper. Res. Lett..

[73]  Alon Itai,et al.  Some Matching Problems for Bipartite Graphs , 1978, JACM.

[74]  Andrea E. F. Clementi,et al.  Communication in dynamic radio networks , 2007, PODC '07.

[75]  Jie Wu,et al.  Scalable Routing in Cyclic Mobile Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[76]  Yoram Moses,et al.  Coordinated consensus in dynamic networks , 2011, PODC '11.