Qualitative behavior of the Lorenz-like chaotic system describing the flow between two concentric rotating spheres

FUCHEN ZHANG, XIAOFENG LIAO, AND GUANGYUN ZHANG College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, People’s Republic of China; College of Electronic and Information Engineering, Southwest University, Chongqing 400716, People’s Republic of China; and International Business School, Chongqing Technology and Business University, Chongqing 400067, People’s Republic of China

[1]  Wang He-yuan BIFURCATION PROBLEMS OF THE MODEL SYSTEM SIMILAR TO THE LORENZ EQUATIONS OF THE FLOW BETWEEN TWO CONCENTRIC ROTATING SPHERES , 2007 .

[2]  Fuchen Zhang,et al.  Dynamical behaviors of the chaotic Brushless DC motors model , 2016, Complex..

[3]  Three-dimensional Navier-Stokes equations truncated on a torus , 1992 .

[4]  Fuchen Zhang,et al.  Boundedness solutions of the complex Lorenz chaotic system , 2014, Appl. Math. Comput..

[5]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[6]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[7]  Chunlai Mu,et al.  On the Boundness of Some solutions of the Lü System , 2012, Int. J. Bifurc. Chaos.

[8]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[9]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[10]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[11]  Da Lin,et al.  The dynamical analysis of a new chaotic system and simulation , 2014 .

[12]  Ayub Khan,et al.  Synchronization of circular restricted three body problem with lorenz hyper chaotic system using a robust adaptive sliding mode controller , 2013, Complex..

[13]  Gennady A. Leonov,et al.  General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu and Chen systems , 2012 .

[14]  James H. Curry,et al.  A generalized Lorenz system , 1978 .

[15]  Gennady A. Leonov,et al.  Bounds for attractors and the existence of homoclinic orbits in the lorenz system , 2001 .

[16]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[17]  Fuchen Zhang,et al.  Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization , 2011 .

[18]  Chunlai Mu,et al.  On the boundedness of solutions to the Lorenz-like family of chaotic systems , 2012 .

[19]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[20]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[21]  Elsayed M. Elsayed,et al.  Dynamics of a three‐dimensional systems of rational difference equations , 2016 .

[22]  Jinde Cao,et al.  Synchronization of fractional-order delayed neural networks with hybrid coupling , 2016, Complex..

[23]  Long Huang,et al.  Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems , 2014, Complex..

[24]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[25]  Heyuan Wang,et al.  Dynamical Behaviors and numerical Simulation of a Lorenz-Type System for the incompressible Flow between Two Concentric rotating Cylinders , 2012, Int. J. Bifurc. Chaos.

[26]  Tao Fan,et al.  Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties , 2014, Complex..