Note on the group edge irregularity strength of graphs
暂无分享,去创建一个
[1] Florian Pfender,et al. An iterative approach to graph irregularity strength , 2010, Discret. Appl. Math..
[2] Bruce A. Reed,et al. Vertex-Colouring Edge-Weightings , 2007, Comb..
[3] Harri Haanp. Sets in Zn with distinct sums of pairs , 2003 .
[4] Florian Pfender,et al. A New Upper Bound for the Irregularity Strength of Graphs , 2011, SIAM J. Discret. Math..
[5] Martin Milanic,et al. Group irregularity strength of connected graphs , 2015, J. Comb. Optim..
[6] Joseph A. Gallian,et al. Contemporary Abstract Algebra , 2021 .
[7] Stanislav Jendrol',et al. On irregular total labellings , 2007, Discret. Math..
[8] N. J. A. Sloane,et al. On Additive Bases and Harmonious Graphs , 1980, SIAM J. Algebraic Discret. Methods.
[9] Ali Ahmad,et al. On edge irregularity strength of graphs , 2014, Appl. Math. Comput..
[10] Jitsuro Nagura. On the interval containing at least one prime number , 1952 .
[11] Alan M. Frieze,et al. On graph irregularity strength , 2002, J. Graph Theory.
[12] Patric R. J. Östergård,et al. Sets in Z nwith distinct sums of pairs , 2004, Discret. Appl. Math..
[13] Tchébichef,et al. Mémoire sur les nombres premiers. , 1852 .
[14] Piotr Majerski,et al. On the Irregularity Strength of Dense Graphs , 2014, SIAM J. Discret. Math..
[15] Jianguo Li,et al. Neighbor sum distinguishing total chromatic number of planar graphs , 2018, Appl. Math. Comput..
[16] Patric R. J. Östergård,et al. Sets in Abelian groups with distinct sums of pairs , 2007 .
[18] Joseph A. Gallian,et al. Harmonious groups , 1991, J. Comb. Theory, Ser. A.
[19] Till Nierhoff. A Tight Bound on the Irregularity Strength of Graphs , 2000, SIAM J. Discret. Math..
[20] Cun-Quan Zhang,et al. The 3-flow conjecture, factors modulo k, and the 1-2-3-conjecture , 2016, J. Comb. Theory, Ser. B.
[21] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[22] J. Pintz,et al. The Difference Between Consecutive Primes, II , 2001 .
[23] Olivier Togni,et al. Irregularity strength of trees , 1998, Discret. Math..
[24] A. Rényi,et al. ON THE REPRESENTATION OF THE NUMBERS 1,2,..., N BY MEANS OF DIFFERENCES, , 1965 .
[25] Benny Sudakov,et al. Embedding rainbow trees with applications to graph labelling and decomposition , 2018, Journal of the European Mathematical Society.
[26] Bruce A. Reed,et al. Degree constrained subgraphs , 2005, Discret. Appl. Math..
[27] A. Thomason,et al. Edge weights and vertex colours , 2004 .
[28] Andrzej Zak. Harmonious order of graphs , 2009, Discret. Math..
[29] Eberhard Triesch,et al. Irregular Assignments of Trees and Forests , 1990, SIAM J. Discret. Math..