Embedding nearly-spanning bounded degree trees

We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of maximum degree at most d on (1 − ε)n vertices, in terms of the expansion properties of G. As a result we show that for fixed d ≥ 2 and 0 < ε < 1, there exists a constant c = c(d, ε) such that a random graph G(n, c/n) contains almost surely a copy of every tree T on (1 − ε)n vertices with maximum degree at most d. We also prove that if an (n, D, λ)-graph G (i.e., a D-regular graph on n vertices all of whose eigenvalues, except the first one, are at most λ in their absolute values) has large enough spectral gap D/λ as a function of d and ε, then G has a copy of every tree T as above.

[1]  Ronald L. Graham,et al.  ON UNIVERSAL GRAPHS , 1979 .

[2]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[3]  Yoshiharu Kohayakawa,et al.  Near-optimum Universal Graphs for Graphs with Bounded Degrees , 2001, RANDOM-APPROX.

[4]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[5]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[6]  Wenceslas Fernandez de la Vega Trees in sparse random graphs , 1988, J. Comb. Theory, Ser. B.

[7]  Ronald L. Graham,et al.  On Universal Graphs for Spanning Trees , 1983 .

[8]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[9]  Béla Bollobás,et al.  Random Graphs , 1985 .

[10]  Joel Friedman,et al.  On the second eigenvalue and random walks in randomd-regular graphs , 1991, Comb..

[11]  Béla Bollobás Long paths in sparse random graphs , 1982, Comb..

[12]  Alan M. Frieze On large matchings and cycles in sparse random graphs , 1986, Discret. Math..

[13]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[14]  Arnold L. Rosenberg,et al.  Universal Graphs for Bounded-Degree Trees and Planar Graphs , 1989, SIAM J. Discret. Math..

[15]  Fan Chung Graham,et al.  On graphs which contain all small trees , 1978, J. Comb. Theory, Ser. B.

[16]  Joel Friedman,et al.  Expanding graphs contain all small trees , 1987, Comb..

[17]  János Komlós,et al.  The longest path in a random graph , 1981, Comb..

[18]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.