An integrated data-driven computational pipeline with model order reduction for industrial and applied mathematics

[1]  Gianluigi Rozza,et al.  Non-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives , 2019, Lecture Notes in Computational Science and Engineering.

[2]  A. Reali,et al.  Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains , 2018, 1811.08631.

[3]  Gianluigi Rozza,et al.  Advances in reduced order methods for parametric industrial problems in computational fluid dynamics , 2018, 1811.08319.

[4]  A. Patera Project Artie: An Artificial Student for Disciplines Informed by Partial Differential Equations. , 2018, 1809.06637.

[5]  Steven L. Brunton,et al.  Deep learning of dynamics and signal-noise decomposition with time-stepping constraints , 2018, J. Comput. Phys..

[6]  Gianluigi Rozza,et al.  The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: From Laminar to Turbulent Flows , 2018, Lecture Notes in Computational Science and Engineering.

[7]  Angela Scardigli,et al.  Enabling of Large Scale Aerodynamic Shape Optimization Through POD-Based Reduced-Order Modeling and Free Form Deformation , 2018, Computational Methods in Applied Sciences.

[8]  Gianluigi Rozza,et al.  EZyRB: Easy Reduced Basis method , 2018, J. Open Source Softw..

[9]  Gianluigi Rozza,et al.  Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics , 2018, 1803.07377.

[10]  Gianluigi Rozza,et al.  Shape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition , 2018, 1803.07368.

[11]  G. Rozza,et al.  Free-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation , 2018, International Journal of Computational Fluid Dynamics.

[12]  Gianluigi Rozza,et al.  PyDMD: Python Dynamic Mode Decomposition , 2018, J. Open Source Softw..

[13]  T. Franz,et al.  Reduced-order models for aerodynamic applications, loads and MDO , 2018 .

[14]  Gianluigi Rozza,et al.  An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment , 2018, 1801.06369.

[15]  G. Rozza,et al.  Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods , 2017, 1711.10884.

[16]  G. Rozza,et al.  Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations , 2017, Computers & Fluids.

[17]  Simona Perotto,et al.  A POD‐selective inverse distance weighting method for fast parametrized shape morphing , 2017, International Journal for Numerical Methods in Engineering.

[18]  Andrea Serani,et al.  Nonlinear Methods for Design-Space Dimensionality Reduction in Shape Optimization , 2017, MOD.

[19]  Gianluigi Rozza,et al.  Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems , 2017, Advanced Modeling and Simulation in Engineering Sciences.

[20]  Gianluigi Rozza,et al.  Reduced Basis Methods for Uncertainty Quantification , 2017, SIAM/ASA J. Uncertain. Quantification.

[21]  A. Cohen,et al.  Model Reduction and Approximation: Theory and Algorithms , 2017 .

[22]  Soledad Le Clainche Martínez,et al.  Higher Order Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..

[23]  G. Rozza,et al.  POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder , 2017, 1701.03424.

[24]  P. Constantine,et al.  Active Subspaces of Airfoil Shape Parameterizations , 2017, 1702.02909.

[25]  Bingni W. Brunton,et al.  Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems , 2016 .

[26]  L. Heltai,et al.  Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes , 2016, Adv. Model. Simul. Eng. Sci..

[27]  Luca Heltai,et al.  Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes , 2016, Advanced Modeling and Simulation in Engineering Sciences.

[28]  Paul G. Constantine,et al.  Time‐dependent global sensitivity analysis with active subspaces for a lithium ion battery model , 2016, Stat. Anal. Data Min..

[29]  Rachel A. Ward,et al.  A near-stationary subspace for ridge approximation , 2016, 1606.01929.

[30]  Gianluigi Rozza,et al.  Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives , 2016 .

[31]  Steven L. Brunton,et al.  Compressed dynamic mode decomposition for background modeling , 2015, Journal of Real-Time Image Processing.

[32]  N. Benjamin Erichson,et al.  Randomized low-rank Dynamic Mode Decomposition for motion detection , 2015, Comput. Vis. Image Underst..

[33]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[34]  Steven L. Brunton,et al.  Multiresolution Dynamic Mode Decomposition , 2015, SIAM J. Appl. Dyn. Syst..

[35]  Sandra Keiper,et al.  Analysis of generalized ridge functions in high dimensions , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[36]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[37]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[38]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[39]  Luca Heltai,et al.  A fully nonlinear potential model for ship hydrodynamics directly interfaced with CAD data structures , 2014 .

[40]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[41]  Gianluigi Rozza,et al.  Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems , 2014 .

[42]  Jonathan H. Tu,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[43]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[44]  A. Huerta,et al.  Proper Generalized Decomposition based dynamic data-driven control of thermal processes ☆ , 2012 .

[45]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[46]  Peter J. Schmid,et al.  Application of the dynamic mode decomposition to experimental data , 2011 .

[47]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[48]  Jeroen A. S. Witteveen,et al.  Explicit Mesh Deformation Using Inverse Distance Weighting Interpolation , 2009 .

[49]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[50]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[51]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[52]  Karen Willcox,et al.  Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics , 2003 .

[53]  克寛 北嶋,et al.  ガウス関数に基づくFree-Form Deformation , 1999 .

[54]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[55]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[56]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[57]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[58]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[59]  Emmanuelle Abisset-Chavanne,et al.  Model and system learners, optimal process constructors and kinetic theory-based goal-oriented design: A new paradigm in materials and processes informatics , 2018 .

[60]  Gianluigi Rozza,et al.  Model Reduction of Parametrized Systems , 2017 .

[61]  Stefan Menzel,et al.  On Shape Deformation Techniques for Simulation-Based Design Optimization , 2015 .

[62]  Andrew Ooi,et al.  Proper Orthogonal Decomposition and Dynamic Mode Decomposition of Under-Expanded Free-Jets with Varying Nozzle Pressure Ratios , 2015 .

[63]  A. Pinkus Ridge Functions: Approximation Algorithms , 2015 .

[64]  Franco Dassia,et al.  ScienceDirect 23 rd International Meshing Roundtable ( IMR 23 ) Curvature-Adapted Remeshing of CAD Surfaces , 2014 .

[65]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[66]  Geoffrey E. Hinton,et al.  Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks , 2006 .