On the fractional doubly parabolic Keller-Segel system modelling chemotaxis

[1]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[2]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[3]  Tong Li,et al.  Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces , 2019, Discrete & Continuous Dynamical Systems - B.

[4]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[5]  H. Kozono,et al.  Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type with small data in scale invariant spaces , 2009 .

[6]  Lei Li,et al.  Cauchy problems for Keller–Segel type time–space fractional diffusion equation , 2017, Journal of Differential Equations.

[7]  Maryam Naghibolhosseini,et al.  Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear , 2015 .

[8]  Vicente Vergara,et al.  Decay estimates for time-fractional and other non-local in time subdiffusion equations in $$\mathbb {R}^d$$Rd , 2014, 1403.1737.

[9]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[10]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[11]  Dong Li,et al.  Exploding solutions for a nonlocal quadratic evolution problem , 2010 .

[12]  C. Cuevas,et al.  On the time‐fractional Keller‐Segel model for chemotaxis , 2019, Mathematical Methods in the Applied Sciences.

[13]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[14]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[15]  J. Burczak,et al.  SUPPRESSION OF BLOW UP BY A LOGISTIC SOURCE IN 2D KELLER-SEGEL SYSTEM WITH FRACTIONAL DISSIPATION , 2016, 1609.03935.

[16]  H. Kozono,et al.  Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data , 1994 .

[17]  Tetsuya Yamada,et al.  Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space , 2007 .

[18]  Yoshie Sugiyama,et al.  Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term , 2006 .

[19]  Á. Cartea,et al.  Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  T. Okabe,et al.  Remark on the strong solvability of the Navier–Stokes equations in the weak $$L^n$$ space , 2017, Mathematische Annalen.

[21]  P. Laurençot,et al.  The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane , 2006 .

[22]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[23]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  O. Barraza Self-similar solutions in weak $L^p$-spaces of the Navier-Stokes equations , 1996 .

[25]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[26]  Richard O’Neil,et al.  Convolution operators and $L(p,q)$ spaces , 1963 .

[27]  R. Worden,et al.  Modeling microbial chemotaxis in a diffusion gradient chamber. , 1997, Biotechnology and bioengineering.

[28]  J. Burczak,et al.  On a generalized, doubly parabolic Keller-Segel system in one spatial dimension , 2014, 1407.2793.

[29]  B. Henry,et al.  Fractional chemotaxis diffusion equations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Gabriela Planas,et al.  Mild solutions to the time fractional Navier-Stokes equations in R-N , 2015 .

[31]  T. Nagai,et al.  Decay Properties and Asymptotic Profiles of Bounded Solutions to a Parabolic System of Chemotaxis in Rn , 2003 .

[32]  Carlos Escudero,et al.  The fractional Keller–Segel model , 2006, math/0611496.

[33]  L. Ferreira,et al.  Existence and asymptotic behaviour for the parabolic–parabolic Keller–Segel system with singular data , 2011 .

[34]  Jian‐Guo Liu,et al.  Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos , 2016 .

[35]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[36]  Rico Zacher,et al.  Representation of solutions and large-time behavior for fully nonlocal diffusion equations , 2015, 1505.02803.

[37]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[38]  Zhichun Zhai Global well-posedness for nonlocal fractional Keller–Segel systems in critical Besov spaces☆ , 2010 .

[39]  J. Burczak,et al.  Critical Keller–Segel meets Burgers on S1: large-time smooth solutions , 2016 .

[40]  Francesco Mainardi,et al.  Probability distributions generated by fractional diffusion equations 1 , 2007 .

[41]  Bruno de Andrade,et al.  Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results , 2015 .

[42]  Benoît Perthame,et al.  Critical space for the parabolic-parabolic Keller–Segel model in Rd , 2006 .

[43]  C. Morales-Rodrigo,et al.  Does the fully parabolic quasilinear 1D Keller-Segel system enjoy long-time asymptotics analogous to its parabolic-elliptic simplification? , 2011, 1111.1580.

[44]  C. Patlak Random walk with persistence and external bias , 1953 .

[45]  T. Miyakawa,et al.  Planar Navier-Stokes flows in a bounded domain with measures as initial vorticities , 1992 .

[46]  Vincent Calvez,et al.  The parabolic-parabolic Keller-Segel model in R2 , 2008 .

[47]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[48]  Sunil Kumar,et al.  A new analysis for the Keller-Segel model of fractional order , 2017, Numerical Algorithms.

[49]  Piotr Biler,et al.  Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis , 2009, Journal of mathematical biology.

[50]  Qinghua Xiao,et al.  Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients , 2016 .

[51]  C. Morales-Rodrigo,et al.  Global existence vs. blowup in a fully parabolic quasilinear 1D Keller–Segel system , 2012 .

[52]  N. Bournaveas,et al.  The one-dimensional Keller–Segel model with fractional diffusion of cells , 2009, 0906.4538.

[53]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[54]  Vincent Calvez,et al.  Blow-up, Concentration Phenomenon and Global Existence for the Keller–Segel Model in High Dimension , 2010, 1003.4182.

[55]  Albert Compte,et al.  Fractional Dynamics in Random Velocity Fields , 1998 .

[56]  H. Kozono,et al.  Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid , 2016 .

[57]  M. Levandowsky,et al.  Random movements of soil amebas , 1997 .

[58]  Tosio Kato Strong solutions of the Navier-Stokes equation in Morrey spaces , 1992 .

[59]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[60]  A. El-Sayed,et al.  On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber , 2009 .

[61]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[62]  O. Barraza Regularity and stability for the solutions of the Navier-Stokes equations in Lorentz spaces , 1999 .

[63]  C. Cuevas,et al.  Existence and asymptotic behaviour for the time‐fractional Keller–Segel model for chemotaxis , 2018, Mathematische Nachrichten.

[64]  H. Kozono,et al.  Existence and uniqueness theorem on mild solutions to the Keller–Segel system in the scaling invariant space , 2012 .

[65]  Badr Saad T. Alkahtani,et al.  Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel , 2015, Entropy.

[66]  Mohsen Zayernouri,et al.  Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system , 2016, J. Comput. Phys..