Reviewing the Classical and the de Bruijn Notation for [lambda]-calculus and Pure Type Systems
暂无分享,去创建一个
[1] Matthias Felleisen,et al. A call-by-need lambda calculus , 1995, POPL '95.
[2] Hongwei Xi,et al. On weak and strong normalisations , 1996 .
[3] CNRSCampus Scienti,et al. The Conservation Theorem Revisited , 1993 .
[4] William C. Frederick,et al. A Combinatory Logic , 1995 .
[5] Fairouz Kamareddine,et al. Refining Reduction in the Lambda Calculus , 1995, J. Funct. Program..
[6] Michel Mauny. Compilation des Langages Fonctionnels dans les Combinateurs Catégoriques -- Application au langage ML , 1985 .
[7] Fairouz Kamareddine,et al. On Stepwise Explicit Substitution , 1993, Int. J. Found. Comput. Sci..
[8] B. Russell. Mathematical Logic as Based on the Theory of Types , 1908 .
[9] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[10] G. Gibson. The Thirteen Books of Euclid's Elements , 1927, Nature.
[11] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[12] C Esar,et al. Proof Representation in Type Theory: State of the Art , 1996 .
[13] Rp Rob Nederpelt,et al. Selected papers on Automath , 1994 .
[14] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[15] Twan Laan. The evolution of type theory in logic and mathematics , 1997 .
[16] Fairouz Kamareddine,et al. Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..
[17] Rob Nederpelt,et al. A useful lambda notation , 1992 .
[18] G. Cantor,et al. Beiträge zur Begründung der transfiniten Mengenlehre. (Zweiter Artikel.) , 2022 .
[19] Fairouz Kamareddine,et al. A useful ?-notation , 1996 .
[20] Amr Sabry,et al. Reasoning about programs in continuation-passing style , 1992, LFP '92.
[21] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[22] Laurent Regnier,et al. Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..
[23] Alejandro Ríos,et al. A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.
[24] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[25] W. Threlfall. A. Heyting, Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie. (Ergebnisse der Mathematik und ihrer Grenzgebiete. Hrsg. v. d. Schriftleitung des „Zentralblatt für Mathematik”, III. Bd., 4. Heft.) Berlin 1934, Julius Springer Verlag. XII + 73 S , 1934 .
[26] A. Kolmogoroff. Zur Deutung der intuitionistischen Logik , 1932 .
[27] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[28] Philippe de Groote,et al. The Conservation Theorem revisited , 1993, TLCA.
[29] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[30] Assaf J. Kfoury,et al. New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[31] Haskell B. Curry,et al. A Theory Of Formal Deducibility , 1950 .
[32] Gottlob Frege,et al. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .
[33] Lena Magnusson,et al. The implementation of ALF : a proof editor based on Martin-Löf's monomorphic type theory with explicit substitution , 1994 .
[34] D. Vidal,et al. Nouvelles notions de réduction en lambda-calcul : Application à la réalisation d'un langage fonctionnel fondé sur la réduction forte , 1989 .
[35] Takahashi. Parallel Reduction in calculus , 1989 .
[36] Fairouz Kamareddine,et al. Pure Type Systems with de Bruijn Indices , 2002, Comput. J..