Reviewing the Classical and the de Bruijn Notation for [lambda]-calculus and Pure Type Systems

This article is a brief review of the type-free -calculus and its basic rewriting notions, and of the pure type system framework which generalises many type systems. Both the type-free -calculus and the pure type systems are presented using variable names and de Bruijn indices. Using the presentation of the -calculus with de Bruijn indices, we illustrate how a calculus of explicit substitutions can be obtained. In addition, de Bruijn’s notation for the -calculus is introduced and some of its advantages are outlined.

[1]  Matthias Felleisen,et al.  A call-by-need lambda calculus , 1995, POPL '95.

[2]  Hongwei Xi,et al.  On weak and strong normalisations , 1996 .

[3]  CNRSCampus Scienti,et al.  The Conservation Theorem Revisited , 1993 .

[4]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[5]  Fairouz Kamareddine,et al.  Refining Reduction in the Lambda Calculus , 1995, J. Funct. Program..

[6]  Michel Mauny Compilation des Langages Fonctionnels dans les Combinateurs Catégoriques -- Application au langage ML , 1985 .

[7]  Fairouz Kamareddine,et al.  On Stepwise Explicit Substitution , 1993, Int. J. Found. Comput. Sci..

[8]  B. Russell Mathematical Logic as Based on the Theory of Types , 1908 .

[9]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[10]  G. Gibson The Thirteen Books of Euclid's Elements , 1927, Nature.

[11]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[12]  C Esar,et al.  Proof Representation in Type Theory: State of the Art , 1996 .

[13]  Rp Rob Nederpelt,et al.  Selected papers on Automath , 1994 .

[14]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[15]  Twan Laan The evolution of type theory in logic and mathematics , 1997 .

[16]  Fairouz Kamareddine,et al.  Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..

[17]  Rob Nederpelt,et al.  A useful lambda notation , 1992 .

[18]  G. Cantor,et al.  Beiträge zur Begründung der transfiniten Mengenlehre. (Zweiter Artikel.) , 2022 .

[19]  Fairouz Kamareddine,et al.  A useful ?-notation , 1996 .

[20]  Amr Sabry,et al.  Reasoning about programs in continuation-passing style , 1992, LFP '92.

[21]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[22]  Laurent Regnier,et al.  Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..

[23]  Alejandro Ríos,et al.  A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.

[24]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[25]  W. Threlfall A. Heyting, Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie. (Ergebnisse der Mathematik und ihrer Grenzgebiete. Hrsg. v. d. Schriftleitung des „Zentralblatt für Mathematik”, III. Bd., 4. Heft.) Berlin 1934, Julius Springer Verlag. XII + 73 S , 1934 .

[26]  A. Kolmogoroff Zur Deutung der intuitionistischen Logik , 1932 .

[27]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[28]  Philippe de Groote,et al.  The Conservation Theorem revisited , 1993, TLCA.

[29]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[30]  Assaf J. Kfoury,et al.  New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[31]  Haskell B. Curry,et al.  A Theory Of Formal Deducibility , 1950 .

[32]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[33]  Lena Magnusson,et al.  The implementation of ALF : a proof editor based on Martin-Löf's monomorphic type theory with explicit substitution , 1994 .

[34]  D. Vidal,et al.  Nouvelles notions de réduction en lambda-calcul : Application à la réalisation d'un langage fonctionnel fondé sur la réduction forte , 1989 .

[35]  Takahashi Parallel Reduction in calculus , 1989 .

[36]  Fairouz Kamareddine,et al.  Pure Type Systems with de Bruijn Indices , 2002, Comput. J..