Position measurements in the de Broglie–Bohm interpretation of quantum mechanics

[1]  Aephraim M. Steinberg,et al.  Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer , 2011, Science.

[2]  A. Valentini De Broglie-Bohm Pilot-Wave Theory: Many Worlds in Denial? , 2008, 0811.0810.

[3]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[4]  A. S. Majumdar,et al.  Aspects of nonideal Stern–Gerlach experiment and testable ramifications , 2007 .

[5]  G. Bacciagaluppi,et al.  Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference , 2006, quant-ph/0609184.

[6]  B. Hiley,et al.  Delayed-choice experiments and the Bohm approach , 2006, 1602.06100.

[7]  G. Ghirardi Sneaking a Look at God's Cards , 2005 .

[8]  R. Tumulka Understanding Bohmian mechanics: A dialogue , 2004, quant-ph/0408113.

[9]  Hans Westman,et al.  Dynamical origin of quantum probabilities , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  L. Vaidman The Reality in Bohmian Quantum Mechanics or Can You Kill with an Empty Wave Bullet? , 2003, quant-ph/0312227.

[11]  Sheldon Goldstein,et al.  Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory , 2003, quant-ph/0308038.

[12]  S. Goldstein Absence of chaos in Bohmian dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Berthold-Georg Englert,et al.  Surrealistic Bohm Trajectories , 1992 .

[14]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[15]  N. Mermin Quantum mysteries revisited , 1990 .

[16]  C. Dewdney,et al.  Spin and non-locality in quantum mechanics , 1988, Nature.

[17]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[18]  P. Pearle Reduction of the state vector by a nonlinear Schrödinger equation , 1976 .

[19]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[20]  L. Broglie Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire : (la théorie de la double solution) , 1957 .

[21]  D. Bohm PROOF THAT PROBABILITY DENSITY APPROACHES //psi//$sup 2$ IN CAUSAL INTERPRETATION OF THE QUANTUM THEORY , 1953 .

[22]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[23]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[24]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .