Position measurements in the de Broglie–Bohm interpretation of quantum mechanics
暂无分享,去创建一个
[1] Aephraim M. Steinberg,et al. Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer , 2011, Science.
[2] A. Valentini. De Broglie-Bohm Pilot-Wave Theory: Many Worlds in Denial? , 2008, 0811.0810.
[3] A. Zeilinger,et al. Going Beyond Bell’s Theorem , 2007, 0712.0921.
[4] A. S. Majumdar,et al. Aspects of nonideal Stern–Gerlach experiment and testable ramifications , 2007 .
[5] G. Bacciagaluppi,et al. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference , 2006, quant-ph/0609184.
[6] B. Hiley,et al. Delayed-choice experiments and the Bohm approach , 2006, 1602.06100.
[7] G. Ghirardi. Sneaking a Look at God's Cards , 2005 .
[8] R. Tumulka. Understanding Bohmian mechanics: A dialogue , 2004, quant-ph/0408113.
[9] Hans Westman,et al. Dynamical origin of quantum probabilities , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] L. Vaidman. The Reality in Bohmian Quantum Mechanics or Can You Kill with an Empty Wave Bullet? , 2003, quant-ph/0312227.
[11] Sheldon Goldstein,et al. Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory , 2003, quant-ph/0308038.
[12] S. Goldstein. Absence of chaos in Bohmian dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[13] Berthold-Georg Englert,et al. Surrealistic Bohm Trajectories , 1992 .
[14] A. Shimony,et al. Bell’s theorem without inequalities , 1990 .
[15] N. Mermin. Quantum mysteries revisited , 1990 .
[16] C. Dewdney,et al. Spin and non-locality in quantum mechanics , 1988, Nature.
[17] Weber,et al. Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.
[18] P. Pearle. Reduction of the state vector by a nonlinear Schrödinger equation , 1976 .
[19] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[20] L. Broglie. Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire : (la théorie de la double solution) , 1957 .
[21] D. Bohm. PROOF THAT PROBABILITY DENSITY APPROACHES //psi//$sup 2$ IN CAUSAL INTERPRETATION OF THE QUANTUM THEORY , 1953 .
[22] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .
[23] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[24] R. Mcweeny. On the Einstein-Podolsky-Rosen Paradox , 2000 .